THE PREMIER GLOBAL EVENT IN APPLIED POWER ELECTRONICS™

APEC 2 1 8

SAN ANTONIO, TEXAS * MARCH 4-8 *

APEC 2018 Sponsors

Table of Contents

Table of Contents

GENERAL INFORMATION

Foreword
Our Partners
Our Sponsors
Conference Committee & Management
Schedule-at-a-Glance
General Information
Important Rules, Notices & Conference Policies
Conference Highlights
Spouse & Guest Program
Sponsor Meetings

CONFERENCE PROGRAM

SCHEDULE BY DAY
Sunday, March 4, 2018
Monday, March 5, 2018
Tuesday, March 6, 2018
Wednesday, March 7, 2018
Thursday, March 8, 2018
Professional Education Seminars
Plenary Session
Rap Sessions
Dialogue Session
Dialogue Session Floor Plan
Convention Center Floor Plan

2018 EXHIBITOR DIRECTORY

APEC 2018 Exposition	183
Exposition Information	184
Exhibitor Seminars	185
Exhibit Hall Floor Plan	209
Exhibitor Listing	211
2018 Supporting Publications	217

APEC Mobile App & Internet

For the latest news and information, access to online conference and hotel information download the **APEC 2018 mobile app** on your mobile device. The app is accessible through Google Play (Android) and App Store (IOS devices) by searching keyword "**APEC IEEE Applied Power Electronics**".

Internet is available throughout the Henry B. Gonzalez Convention Center to APEC attendees and can be accessed by connecting to the "**APEC**" wireless network. After selecting the "APEC" wireless network, open your web browser and you will be prompted to input a password. The password is **APEC2018**.

Foreword

Foreword

It is my honor to personally welcome you to the 33nd annual IEEE Applied Power Electronics Conference and Exposition (APEC 2018), at the Henry B. Gonzalez Convention Center in historic downtown San Antonio, Texas. APEC brings together power electronic professionals from all sectors annually to participate in a rewarding exchange of technical knowledge, while gaining insight and valuable industry connections. This is an opportunity which is truly only possible at APEC, the Premier Event in Applied Power Electronics. I look forward to APEC every year as a time to meet colleagues, see what new directions are emerging in our field, and find new solutions to the problems I face — or sometimes discover new problems to solve.

APEC is made possible each year through the tireless effort of its all-volunteer organizing committee and the three sponsoring organizations: Power Sources Manufacturers Association (PSMA), and two IEEE societies, the Power Electronics Society (PELS) and Industry Applications Society (IAS). It is their combined dedication, expertise, and support along with our professional conference management partner, SmithBucklin, which drives the success of this conference as a showcase of the latest advances in power electronics.

APEC 2018 provides an unmatched technical program and exposition experience, highlighting the best our industry has to offer. The conference begins with 18 Professional Education Seminars organized into 6 parallel tracks, followed by 6 Keynote speakers featured in the Plenary session on Monday afternoon. Then the exhibit hall, featuring cutting-edge technologies and products from 300 companies, opens with a reception for all attendees on Monday evening. Tuesday through Thursday feature the technical papers organized into 63 sessions with nearly 600 peer-reviewed paper presentations on the latest topics from worldwide academic, government and industry presenters, along with 25 industry sessions featuring an additional 130 presentations. Besides these technical sessions, there is also the Micro-Mouse contest on Monday night, 3 popular Rap sessions on Tuesday night, and the big social event/banquet on Wednesday night in the convention center ballroom. To help you navigate the conference, download the APEC Mobile App – it features an interactive directory and map of the floor as well as schedules and access to all the technical papers.

Besides all of these presentations, sessions and events to attend, I always find that is connecting with my peers, friends and colleagues face-to-face, catching-up with what new things they are working on, and discovering the latest trends in their realm that is the most rewarding aspect of attending APEC. I hope you are able to take advantage of the great restaurants and entertainment opportunities in San Antonio while enjoying all of the events at APEC with your friends and colleagues.

I want to thank the APEC attendees, exhibitors, sponsors, organizing & steering committee members, reviewers and volunteers - it is your passion and knowledge which makes APEC a memorable event year after year. I look forward to meeting you at APEC 2018 and sharing in this experience together.

Best Regards,

Eric Persson General Chair 2018 IEEE Applied Power Electronics Conference and Exposition

Our Partners

APEC Partners provide financial support to enhance the experience while keeping registration fees low.

DIAMOND

PLATINUM

GOLD

SILVER

8

CONFERENCE AND EXPOSITION

Our Sponsors

APEC 2018 Sponsors provide financial backing (including liability).

APEC 2018 Sponsors

≒C 2+1

APEC. 2*18 Conference Committee & Management

Conference Committee

Eric Persson General Chair *Infineon Technologies*

Ernie Parker Program Chair *Crane Aerospace & Electronics*

José A. Cobos Assistant Program Chair *Universidad Politécnica de Madrid*

Aung Thet Tu Seminar Co-Chair Plenary Session Chair Infineon Technologies

Kevin Parmenter Exposition Co-Chair *Advanced Energy*

Van Niemela Exposition Co-Chair *GE Energy*

Jin Wang Seminar Co-Chair *The Ohio State University*

Tony O'Gorman Industry Session Co-Chair *PSEC, Inc.*

Conor Quinn Industry Session Co-Chair *Artesyn Embedded Technologies*

Mark Nelms Finance Co-Chair Auburn University

6

Alireza Khaligh Past General Chair 2016 University of Maryland at College Park Jonathan Kimball Past General Chair 2017 Missouri University of Science & Technoloav

John Vigars Finance Co-Chair Allegro MicroSystems

Omar C. Onar Rap Sessions Co-Chair Oak Ridge National Laboratory

Berker Bilgin Rap Sessions Co-Chair McMaster University

Greg Evans Publicity Chair *WelComm, Inc.*

Frank Cirolia Social Media Chair Artesyn Embedded Technologies

Adam Pitel Web Chair Magna-Power Electronics

Pradeep Shenoy Marketing/App Chair *Texas Instruments*

Ali Khajehoddin Grants and Awards Chair *University of Alberta*

Siamak Abedinpour Publications Chair Dialog Semiconductor, Inc.

David Otten MicroMouse Chair Massachusetts Institute of Technology

Jane Wilson Spousal Hospitality Chair

Members-at-Large

Sara Ahmed Member-at-Large *University of Texas at San Antonio*

Doug Hopkins Member-at-Large *North Carolina State University*

Indumini Ranmuthu Member-at-Large *Texas Instruments*

Conference Management

David Weil Conference Director *SmithBucklin*

Francesca Malin Conference Manager SmithBucklin

Zack Lambert Education Manager SmithBucklin

Allison Hudson Marketing Coordinator SmithBucklin Lisa Schellenberg Marketing Manager SmithBucklin

Ingrid Qualls Exposition Manager SmithBucklin

Tonya Stanback Registration Manager *SmithBucklin*

Tom Wehner Abstracts Management *Epapers LLC*

Steering Committee

Jonathan Kimball Steering Committee Chair Missouri University of Science & Technology

Aung Thet Tu Infineon Technologies

Siamak Abedinpour Dialog Semiconductor Inc.

Frank Cirolia Artesyn Embedded Technologies

José A. Cobos Universidad Politécnica de Madrid **Babak Fahimi** University of Texas at Dallas

Alireza Khaligh University of Maryland at College Park

Eric Persson Infineon Technologies

Ernie Parker Crane Aerospace & Electronics

Schedule-at-a-Glance

*Room assignments are tentative and subject to change. *Please check for updates on APEC Mobile App.

Schedule as of February 15

Schedule-at-a-Glance

	S = Professional Education Seminars	R = Rap Sessions	IS = Industry Sessions D = Dialogue Sessions	T = Technical Sessions
unda	ay, March 4, 2018			
egistr	ation			WEST REGISTRATION
lobile	App Help Desk			MAIN LOBBY
resen	ter Breakfast			HEMISFAIR BALLROOM C3
01:	Fundamentals of Switch Mode I	Power Conversion		ROOM 217D
02:	Modern Soft Switching Technology	ogies		ROOM 206
03:	Thermal and Reliability Modellir Power Electronics Systems			ROOM 217A
04:	WBG Switching Circuits: Design Devices and Applications	, Test,		ROOM 214AB
05:	High-Efficiency Single-Phase In Approach for Google Little Box			R00M 214CD
06:	Power Quality Control in Hybrid	AC/DC Microgrids	9:30 a.m. – 1:00 p.m	ROOM 217BC
reak.			11:00 a.m. – 11:30 a.m	PARKVIEW REGISTRATION FOYER
unch.			1:00 p.m. – 2:30 p.m	On Own
07:	Electromagnetic Interference ar for Power Electronics Engineers		2:30 p.m. – 6:00 p.m	ROOM 217D
08:	New High-Frequency Magnetics	Circuit Models	2:30 p.m. – 6:00 p.m	R00M 214CD
09:	Advanced Thermal Managemen	t Technologies	2:30 p.m. – 6:00 p.m	R00M 217A
10:	Designing Reliable and High De with GaN		2:30 p.m. – 6:00 p.m	ROOM 214AB
11:	Power Semiconductors for Tract in Vehicles: from Discretes to Po from Silicon to Wide Band Gap	ower Modules,	2:30 p.m. – 6:00 p.m	R00M 206
12:	Power Converters for Energy St Analysis and Design from Theor		2:30 p.m. – 6:00 p.m	R00M 217BC
reak.			4:00 p.m. – 4:30 p.m	PARKVIEW REGISTRATION FOYER
lond	ay, March 5, 2018			
resen	ter Breakfast			HEMISFAIR BALLROOM C3
egistr	ation			WEST REGISTRATION
lobile	App Help Desk			MAIN LOBBY
pouse	e and Guest Breakfast			RIO VISTA ROOM at the MARRIOTT RIVERCENTER
13:	Gate Driver Design for IGBT and Power Devices and Modules			R00M 217BC
14:	Closing the Feedback Loop Three	ough Simulation and Analysis		ROOM 214CD
15:	International Product Compliance 10			R00M 206
16:	Maximizing GaN FET and IC Per Not Just a Drop in Replacement			ROOM 214AB

8 APEC. 2+18 CONFERENCE A

KEY:	S = Professional Education Seminars	R = Rap Sessions	IS = Industry Sessions D = Dialogue Sessions	T = Technical Sessions
S17:	Optimizing Power Converter Topo Module Selection in 1500V Solar			R00M 217A
S18:	Small-Signal Stability and Subsys in Distributed Power Systems with 3-Phase AC Systems	n Multiple Converters (II):		R00M 217D
Spouse departs	and Guest Tour "Yanguana Missio (Registration Required)	n Heritage Tour"		Departs from MARRIOTT RIVERCENTER LOBBY
Break.				Parkview registration foyer
Lunch.			12:00 p.m. – 1:15 p.m	On Own
Opening	g Plenary Session		1:15 p.m. – 5:00 p.m	Hemisfair Ballroom C1/C2
			3:00 p.m. – 3:30 p.m	
			8:00 p.m. – 10:00 p.m	
	ay, March 6, 2018		h h.	
				Hemisfair Ballroom C3
-				
IS01:	Latest Advancements in Device a for High Power, High Frequency S			ROOM 206
IS02:	High Frequency Magnetics – Win	ding Design		ROOM 207
IS03:	Capacitors for Emerging Power C	onversion Applications		ROOM 205
IS04:	Comparisons and Tradeoffs of Int Gate Driver Isolation Technologies			R00M 212
IS05:	Energy Harvesting			R00M 213
T01:	Three-Phase AC-DC Converters.			ROOM 214A
T02:	Hybrid DC-DC Converters			ROOM 214B
T03:	Power Electronics for Utility Interf Structures & Topologies			ROOM 214C
T04:	Faults in Electric Machines And D	rives	8:30 a.m. – 12:00 p.m	ROOM 214D
T05:	Power Devices Modeling			ROOM 217A
T06:	Control of DC-DC Converters			ROOM 217B
T07:	Inverters for PV Systems		8:30 a.m. – 12:00 p.m	R00M 217C
T08:	SMP Audio and Battery			ROOM 217D
	and Guest Tour <i>San Antonio Botal</i> (<i>Registration Required</i>)			Departs from MARRIOTT RIVERCENTER LOBBY
Break.			10:10 a.m. – 10:40 a.m	EXHIBIT HALL 3/4
Lunch.		· · · · · · · · · · · · · · · · · · ·	12:00 p.m. – 1:30 p.m	EXHIBIT HALL 3/4
			1:30 p.m. – 2:00 p.m	

KEY:	S = Professional Education Seminars	R = Rap Sessions	IS = Industry Sessions D = Dialogue Sessions	T = Technical Sessions
Exhibito	r Seminars – Session #2 (Cor	current Sessions)	2:15 p.m. – 2:45 p.m.	See Page 60
Break.			2:45 p.m. – 3:15 p.m.	PARKVIEW REGISTRATION FOYER
Campfi	re Connections - Women in Er	gineering	2:45 p.m. – 3:15 p.m.	THE HUB, BOOTH 931
Exhibito	r Seminars – Session #3 (Cor	current Sessions)	3:00 p.m. – 3:30 p.m.	See Page 61
Exhibito	r Seminars – Session #4 (Cor	current Sessions)	3:45 p.m. – 4:15 p.m.	See Page 62
R01:	Biggest Impact on Power Cor	version- Devices or Magnetics	5:00 p.m. – 6:30 p.m.	HEMISFAIR C1
R02:	Drive Isolation Technologies: or Capacitive Coupling		5:00 p.m. – 6:30 p.m.	
R03:			5:00 p.m. – 6:30 p.m.	
IFFF PF	I S Mentorship Round Tables	Registration Required)	7:30 p.m. – 9:30 p.m.	· · · · ·
	esday, March 7, 2018			
				Hemiseair Ballroom C3
U				
IS06:	Wide Bandgap Device Topics			n ROOM 206
IS07:				
IS08:	-			
IS09:				
IS010:		•		
T09:	-			
T10:				
T11:				
T12:				
T13:	-			
T14:				
T15:				
T16:		•		
-				
	-			
	,	,		-
			11:15 a.m. – 11:45 a.m	
	,	,	12:00 p.m. – 12:30 p.m	-
Lunch.			12:30 p.m. – 2:00 p.m.	EXHIBIT HALL 3/4
IS11:	Enabling High-Volume Wide Ba Manufacturing and Application		2:00 p.m. – 5:25 p.m.	R00M 206

	S = Professional Education Seminars	R = Rap Sessions	IS = Industry Sessions D = Dialogue Sessions	T = Technical Sessions
IS12:	Vehicle Batteries – It's More Than Together and an EV1 Retrospectiv		2:00 p.m. – 5:25 p.m	R00M 207
IS13:	Alternative Energy		2:00 p.m. – 5:25 p.m	ROOM 205
IS14:	Innovative Component, Reliability 3D Power Packaging Solutions		2:00 p.m. – 5:25 p.m	R00M 212
IS15:	Motor Drives, Inverters and Modu	les	2:00 p.m. – 5:25 p.m	R00M 213
T17:	Single-Phase AC-DC Converters .		2:00 p.m. – 5:30 p.m	ROOM 214A
T18:	Soft Switching Converters		2:00 p.m. – 5:30 p.m	ROOM 214B
T19:	Control of Inverters and Drives I		2:00 p.m. – 5:30 p.m	R00M 214C
T20:	GaN Device Opportunities and Ch	allenges	2:00 p.m. – 5:30 p.m	ROOM 214D
T21:	Power Converter Modeling & Cont	trol	2:00 p.m. – 5:30 p.m	ROOM 217A
T22:	Control Strategies for Inverters &	Motor Drives	2:00 p.m. – 5:30 p.m	ROOM 217B
T23:	Wireless Power Transfer Application	ons	2:00 p.m. – 5:30 p.m	ROOM 217C
T24:	Photovotlaic & Grid Tie Systems .		2:00 p.m. – 5:30 p.m	R00M 217D
Break.			3:40 p.m. – 4:10 p.m	PARKVIEW REGISTRATION FOYER
'Wester	n" Evening Social Event (Ticket Re	quired)	6:00 p.m. – 9:00 p.m	HEMISFAIR BALLROOM
Thurse	lay, March 8, 2018			
				Hemisfair Ballroom C3
Registra	tion			WEST REGISTRATION
-				
S16:	Reliability and Ruggedness – How Challenges in Wide Bandgap Sem			ROOM 206
S17:	Powering Servers and Datacenter	S		BOOM 207
S18:	Tapalagian and Captrol			1100101 207
010.	Topologies and Control			
				ROOM 205
S19:	Powering Mobile and Consumer F	Products		ROOM 205 ROOM 212
S19: S20:	Powering Mobile and Consumer F PMBus Implementation and Applie	Products		ROOM 205 ROOM 212 ROOM 213
S19: S20: F25:	Powering Mobile and Consumer F PMBus Implementation and Applie DC-DC Converter Applications	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A
S19: S20: Г25: Г26:	Powering Mobile and Consumer F PMBus Implementation and Applie DC-DC Converter Applications Switched And Synchronous Reluc	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B
S19: S20: T25: T26: T27:	Powering Mobile and Consumer F PMBus Implementation and Applic DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr	Products cations tance Motor Drives nostics		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C
S19: S20: [25: [26: [27: [28:	Powering Mobile and Consumer F PMBus Implementation and Applic DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D
S19: S20: [25: [26: [27: [28: [29:	Powering Mobile and Consumer F PMBus Implementation and Applic DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D ROOM 217A
S18: S19: S20: [25: [26: [27: [28: [29: [30: [31:	Powering Mobile and Consumer F PMBus Implementation and Applie DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap Renewable Energy Topics	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D ROOM 217A ROOM 217B
S19: S20: I25: I26: I27: I28: I29: I30:	Powering Mobile and Consumer F PMBus Implementation and Applic DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap Renewable Energy Topics Conversion Systems for Electric V	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D ROOM 217A ROOM 217B ROOM 217C
S19: S20: [25: [26: [27: [28: [29: [30: [31:	Powering Mobile and Consumer F PMBus Implementation and Applie DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap Renewable Energy Topics Conversion Systems for Electric V Grid Applications	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D ROOM 217A ROOM 217B ROOM 217C ROOM 217D
S19: S20: [25: [26: [27: [28: [29: [30: [31: [31: [32:]32:]3reak	Powering Mobile and Consumer F PMBus Implementation and Applic DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap Renewable Energy Topics Conversion Systems for Electric V Grid Applications	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214D ROOM 217A ROOM 217A ROOM 217B ROOM 217C ROOM 217D PARKVIEW REGISTRATION FOYER
S19: S20: T25: T26: T27: T28: T29: T30: T30: T31: T32: Break Lunch	Powering Mobile and Consumer F PMBus Implementation and Applie DC-DC Converter Applications Switched And Synchronous Reluc Power Module Integration & Progr Power Quality Oriented Control Wireless Power Transfer for EV Ap Renewable Energy Topics Conversion Systems for Electric V Grid Applications	Products		ROOM 205 ROOM 212 ROOM 213 ROOM 214A ROOM 214B ROOM 214C ROOM 214C ROOM 214D ROOM 217A ROOM 217B ROOM 217C ROOM 217D PARKVIEW REGISTRATION FOYER HEMISFAIR BALLROOM

KEY:	S = Professional Education Seminars	R = Rap Sessions	IS = Industry Sessions D = Dialogue Sessions	T = Technical Sessions
D03:	Miscellaneous Topics in DC-DC Conv	verters II		HEMISFAIR BALLROOM
D04:	Power Electronics for Utility Interface	1		Hemisfair Ballroom
D05:	Power Electronics for Utility Interface	II		Hemisfair Ballroom
D06:	Controls & Diagnostics of Inverters &	Drives		Hemisfair Ballroom
D07:	Inverter Topologies			Hemisfair Ballroom
D08:	Magnetics and Capacitors			Hemisfair Ballroom
D09:	Power Devices			HEMISFAIR BALLROOM
D10:	Device Reliability			HEMISFAIR BALLROOM
D11:	Power Module Packaging, Thermal &	Application		Hemisfair Ballroom
D12:	Power Devices Modeling & Simulatio	n		HEMISFAIR BALLROOM
D13:	Modeling and Simulation of Power C	onverters		HEMISFAIR BALLROOM
D14:	Control I			HEMISFAIR BALLROOM
D15:	Control II			HEMISFAIR BALLROOM
D16:	Wireless Power Transfer			HEMISFAIR BALLROOM
D17:	Wind And Solar Power			HEMISFAIR BALLROOM
D18:	Microgrids and Grid Connect			HEMISFAIR BALLROOM
D19:	Renewable Energy Systems			HEMISFAIR BALLROOM
D20:	Transportation Power Electronics			HEMISFAIR BALLROOM
D21:	LED Applications			HEMISFAIR BALLROOM
D22:	Industrial and Grid Applications			HEMISFAIR BALLROOM
D23:	Switchmode Power Supply & Battery	Applications		HEMISFAIR BALLROOM
IS21:	Test & Measurement		2:00 p.m. – 3:40 p.m.	ROOM 206
IS22:	Passive Components		2:00 p.m. – 3:40 p.m.	ROOM 205
IS23:	Market Analysis and Semiconductor	Fabrication Business	2:00 p.m. – 3:40 p.m.	ROOM 213
T33:	High Conversion Ratio Converters		2:00 p.m. – 5:30 p.m.	ROOM 214A
T34:	Power Electronics for Utility Interface	- Control	2:00 p.m. – 5:30 p.m.	ROOM 214B
T35:	Multi-level Inverters and Converters.		2:00 p.m. – 5:30 p.m.	ROOM 214C
T36:	Opportunities and Challenges of SiC	& Si Devices	2:00 p.m. – 5:30 p.m.	ROOM 214D
T37:	Magnetics Modeling Design & Applic	ations	2:00 p.m. – 5:30 p.m.	ROOM 217A
T38:	Control Application		2:00 p.m. – 5:30 p.m.	ROOM 217B
T39:	Renewable Energy Converter Topolog	jies	2:00 p.m. – 5:30 p.m.	ROOM 217C
T40:	Industrial Applications		2:00 p.m. – 5:30 p.m.	ROOM 217D
Break.			3:40 p.m. – 4:10 p.m.	PARKVIEW REGISTRATION FOYER

General Information

Conference Location

Henry B. Gonzalez Convention Center

900 E Market Street San Antonio, TX 78205 Phone: 210-207-8500

APEC has several host hotels in the San Antonio area which will be accommodating our participants.

- Hilton Palacio del Rio 200 S Alamo Street San Antonio, TX 78205
- The Marriott Rivercenter 101 Bowie Street San Antonio, TX 78205
- Springhill Suites San Antonio Downtown/Riverwalk 524 S Saint Mary's Street San Antonio, TX 78205

> The Westin Riverwalk

San Antonio, TX 78205

203 Alamo Plaza

- The Marriott Riverwalk 889 E Market Street San Antonio. TX 78205
- Menger Hotel 2204 Alamo Plaza San Antonio. TX 78205

Transportation

AREA AIRPORT

San Antonio International Airport – SAT

Distance: 9.5 miles from the Henry B. Gonzalez Convention Center and APEC hotels.

Estimated taxi fare: \$25.00-\$30.00 USD (one way) Alternate transportation: Uber, Lyft

PARKING

- Hilton Palacio del Rio Self Parking Only (no valet offered)
- > Marriott Rivercenter/Riverwalk Valet Parking: \$42 (daily)
- > The Menger Hotel Valet Parking: \$20 per night excluding tax
- Springhill Suites San Antonio Downtown/Riverwalk Valet Parking: \$24 (daily)
- The Westin Riverwalk Nightly Parking: \$39 per day, one time (non-overnight) parking is \$25

GETTING AROUND TOWN

Visit your hotel concierge desk or the visitors desk at the convention center for details regarding the numerous ways to get around town.

Conference Registration

In order to participate in the APEC 2018 Conference you must be registered. Prepaid conference registration is required for the professional educational seminars, presentation sessions and dialogue sessions.

To register or pick up your conference materials please visit the APEC Registration Center at the Henry B. Gonzalez Convention Center (West Registration).

Saturday, March 3	4:00 p.m. – 7:00 p.m.
Sunday, March 4	8:00 a.m. – 5:00 p.m.
Monday, March 5	7:00 a.m. – 6:00 p.m.
Tuesday, March 6	7:00 a.m. – 5:00 p.m.
Wednesday, March 7	7:00 a.m. – 3:00 p.m.
Thursday, March 8	7:00 a.m. – 12:00 p.m.

Information for Presenters

Professional Education Seminar Presenters:

Breakfast will be provided for you the morning of your presentation. You should attend the breakfast only on the morning of your seminar. During breakfast, you will receive brief instructions from the Professional Education Seminar Chairs.

Professional Education Seminar Presenter Breakfast

LOCATION: Hemisfair Ballroom C3 Henry B. Gonzalez Convention Center DAY/TIME: Sunday at 8:00 a.m. and Monday at 7:00 a.m.

Industry Sessions and the Lecture Technical Session Presenters:

You must attend a mandatory breakfast on the morning of your session. The Program Chair will host this breakfast at which you will be given your speaker ribbon and provided instructions. Immediately after breakfast you will be able to review your previously uploaded presentation with your session chair.

> Industry and Lecture Technical Session Presenter Breakfast

LOCATION: Hemisfair Ballroom C3 Henry B. Gonzalez Convention Center DAY/TIME: Tuesday-Thursday at 7:00 a.m.

Dialogue Technical Session Presenters:

You must attend a mandatory breakfast on the morning of your session. During breakfast you will receive brief instructions and will be able to mount your presentation on the poster boards in the room next door after the breakfast. Thumb tacks will be provided.

> Dialogue Technical Session Presenter Breakfast

LOCATION: Hemisfair Ballroom C3 Henry B. Gonzalez Convention Center DAY/TIME: Thursday at 7:00 a.m.

Speaker Ready Room:

The Speaker Ready room to available to all presenters should you need to review your presentation in advance of your session or make any edits.

LOCATION: Room 211, Henry B. Gonzalez Convention Center HOURS:

Sunday, March 4 8:00 a.m. –	5:00 p.m.
Monday, March 5	5:00 p.m.
Tuesday, March 6	5:00 p.m.
Wednesday, March 7	5:00 p.m.
Thursday, March 8	12:00 p.m.

Purchasing of Conference Proceedings and Seminar Workbooks

Only copies on USB of the APEC Proceedings will be provided with the Full or Technical Sessions registration.

Conference registrants can purchase extra copies of the Conference Proceedings and Seminar Workbooks on USB through Early Registration. APEC reserves the right to limit quantities of APEC Proceedings or Seminar Workbooks sold to any one person or institution.

Conference Proceedings & Seminars on USB Payment Policy

For payments at the conference, APEC can accept credit cards (Master Card, Visa or American Express), or checks or money orders (payable in U.S dollars and drawn on a U.S. bank). Checks and money orders returned unpaid will be assessed and an additional handling charge of \$50.00 USD.

A LIMITED NUMBER of copies of the Conference Proceedings and Seminar Workbooks may be available for sale in West Registration, starting at noon on Sunday, March 4.

	011 0110
Conference Proceedings (USB Only)	\$180.00 USD
Seminar Workbook (USB only)	\$180.00 USD

Publications purchased can be picked up at the registration desk.

> purchasing through the iEEE

Post conference APEC Proceedings may be purchased through the IEEE.

$>\,$ IEEE Single Copy Sales

445 Hoes Lane Piscataway, New Jersey 08854 USA P: (800) 678-4333 (USA & Canada) or (732) 981-0060 Web site: http://shop.ieee.org/ieeestore/

General Information

On-site

Important Rules, Notices & Conference Policies

Registration Cancellation & Refund Policy

mportant Rules, Notices & Conference Policies

All registrations must include payment. Payment methods include credit card, check or money order. Checks may be personal, business or certified. Checks and money orders must be payable in United States dollars and drawn on a United States bank. Accepted credit cards: Master Card, Visa and American Express. Checks and money orders returned unpaid or credit card payments for which payment was refused will be assessed an additional handling charge of \$50.00 USD.

All requests for cancellation and refund of registration fees must be received in writing at the APEC offices no later than the close of business February 5, 2018. All refunds will be processed after the conclusion of the conference and will be subject to a \$50.00 USD processing fee.

For those who register and are unable to attend the conference, any Proceedings, Seminars on USB or other materials to which you are entitled will be shipped to you within 30 days of the conclusion of the conference.

Badges Required for Admission

Badges are required for admission to all APEC events and activities. Badges are obtained by registering with the conference. APEC reserves the right to deny admission to any APEC event or activity to any person not showing an appropriate badge for that activity or event.

Recording & Photography at APEC

Video and audio recording may be conducted in the Exhibit area, the MicroMouse contest, and public areas of APEC, but nowhere else except with written permission from the Conference Chair.

Still photography at APEC is permitted, but with limitations. The general principle is that people may be photographed but photographing presentations and other content is prohibited unless permission from the presenter(s) is obtained in advance. For more details, please see show management.

Showcase Policy – NO SUITCASING!

Please note that while all meeting attendees are invited to the showcase, any attendee who is observed to be soliciting business in the aisles or other public spaces, in another company's booth, or in violation of any portion of the Exhibition Policy, will be asked to leave immediately. Additional penalties may be applied. Please report any violations you may observe to Show Management. Show Management recognizes that suitcasing may also take the form of commercial activity conducted from a hotel guest room or hospitality suite; a restaurant, club, or any other public place of assembly. For the purposes of this policy, suitcasing violations may occur at venues other than the exhibition floor and at other events. Show Management must be informed of any hospitality suites, and expressed consent must be received prior to the event.

No Recruiting! No Recruiters!

IEEE Policy #10.1.24 prohibits recruiting at IEEE sponsored conferences. Consequently, recruiters and recruiting advertisements will not be permitted in the APEC 2018 hotel space, meeting facilities or Exhibit Hall.

Distributing Commercial Material at APEC

Rules For Non-Exhibitors

Distribution of commercial material in the APEC 2018 hotel space (including directly to the hotel rooms of APEC participants), meeting space and Exhibit Halls by people or organizations not participating in the Exposition is prohibited.

APEC reserves the right to remove without notice any materials not in compliance with this policy.

Rules For Exhibitors

Exhibitors may only distribute commercial materials in their booth, at Exhibitor Seminars they are conducting and at press conferences they are holding. APEC reserves the right to remove without notice any materials not in compliance with this policy.

Conference Highlights

Privacy Policy

Information Provided During Registration

Contact information, which includes your name, affiliation, and mailing address, may be provided upon request to any partners and/or supporting publication participating in the APEC 2018 Exposition. In addition APEC may use the information you provide to contact you with information about APEC 2018 or any future APEC. No other use will be made of the information you provide. Your information will not be sold, distributed, leased or provided to any other person or organization except as described above.

Information Provided Other Than Through Registration

People who provide their names to APEC through the APEC Web site, direct contact, submitting a digest, volunteering to review or in any way other than registering for the conference, will not have their names and contact information distributed to any one or any organization, including APEC's sponsors. APEC will use the contact information only for transmitting information related to APEC. Conference registrants names and contact information, including name, affiliation, and mailing address will be provided to the exhibitors and media partners. Emails will only be provided to exhibitors through the Lead Retrieval systems used on the show floor. Registering for APEC gives permission for your name and contact information to be provided to the exhibitors and media partners and for the exhibitors and media partners to contact you during or after the conference. APEC will not otherwise distribute names and contact information received through the registration process.

Conference Highlights

Plenary Session

APEC 2018 Plenary Session is designed to cover the history of power, the current needs in energy efficiency and the future possibilities. The plenary is made up of six presentations from respected industry leaders. Each presentation is 30 minutes in length and allows for interactive Q&A at the end of each presentation.

Professional Education Seminars

This year APEC will have 18 Professional Education Seminars which will take place on Sunday, March 4 and Monday, March 5. Seminars will be given with the following tracks: Fundamentals; Design; Reliability and Safety; Wide Bandgap; Inverters; Grid.

Technical Sessions

APEC professionals like you participated in a rigorous peer review process and have carefully picked over 500 papers making up APEC's Technical Sessions. The review process highlights the most innovative technical solutions, and provides the highest quality possible. The technical program includes papers of broad appeal scheduled for oral presentation from Tuesday morning through Thursday afternoon. Papers with a more specialized focus are available for discussion with authors at the dialogue session on Thursday from 11:30 a.m. – 2:00 p.m. The various technical venues cover all areas of technical interest to the practicing power electronics professional. The papers are sure to give you many new design ideas that you can apply to your work immediately.

Industry Sessions

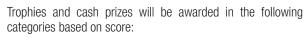
At APEC 2018, the Industry Sessions track continues to expand. This track runs in parallel with the traditional Technical Sessions Track. Speakers are invited to make a presentation only, without submitting a formal manuscript for the APEC Proceedings. This allows APEC to present information on current topics in power electronics from sources that would not otherwise be present at an industry conference. While many of these sessions are technical in nature, some also target business-oriented people such as purchasing agents, electronic system designers, regulatory engineers, and other people who support the power electronics industry.

Rap Sessions

We have three exciting and contentious topics lined up for this year. Rap sessions allow for exciting dialogue amongst attendees and presenters. Admission to all Rap Sessions is free with an Exhibits Only Registration and free refreshments will be available.

Exhibitor Seminars & Exposition

Looking for answers to the problems that are waiting for you when you get back to the office or lab? The APEC Exhibitor Seminars may have the answers you are looking for. These half hour presentations give you a more in-depth look at an Exhibitor's products or services than you can get by just dropping by their booth. With presentations on so many topics, you are sure to find several of interest. The seminars will be held Tuesday afternoon and Wednesday morning.


Entrance to the Exhibition is open to all conference attendees, including holders of the free Exhibits Only registration!

MicroMouse Contest

Monday, March 5, 2018 Starting at 8:00 p.m. (after Exhibit Hall closes at 8:00 p.m.) EXHIBIT HALL 4B

Enter the annual APEC Micromouse contest or join us as a spectator for this exciting event. Participants design, build, and program robotic mice and compete to see who can navigate their way through the maze in the shortest time.

The rules for the contest use a scoring system with a penalty for the time taken to map and run the maze, and a bonus for not touching the mouse. They are similar to those used at the IEE World Final held in London in 1987 except that the touch penalty has been reduced from 10 seconds to 2 seconds. The time for each contestant has also been reduced from 15 to 7 minutes. Within this time limit, the Micromouse may make up to 5 runs. Only one mouse per handler will be allowed this year.

- > \$500 first place
- > \$250 second place
- > \$125 third place

Trophies and cash prizes will be awarded to students in the following categories:

- > \$500 best student (based on score)
- > \$150 fastest run (based on run time)

Conference Social Event

Wednesday, March 7 6:00 p.m. – 9:00 p.m. HEMISFAIR BALLROOM HENRY B. GONZALEZ CONVENTION CENTER

APEC 2018 Full Conference and Technical Session registrants will receive a social event ticket with their registration. If you have a Seminar only registration, exhibits only registration or are registered as an exhibitor, you should purchase a social event ticket by visiting the registration desk. You can also purchase tickets for your guest to attend. Exhibiting Companies will receive a Social Event Ticket with their Conference Registration.

Young Professionals & Students Reception

(All Young Professionals and Students Welcome)

Sponsored by IEEE PELS and IEEE IAS

LOCATION: Rio Rio Cantina, Estrella Room, 421 E. Commerce Street

DAY/TIME: Tuesday, March 6, 7:00 p.m. – 10:00 p.m.

Power Electronics Society (PELS) and IEEE Industry Application Society (IAS) give you this opportunity to learn from the life journey of the biggest leaders at APEC along with an evening well spent talking to people from across the globe. Make sure you don't miss this wonderful chance to make new friends and meet new people. Please visit *http://bit.ly/2rNjQFQ* for more information.

Spouse & Guest Program

APEC welcomes the spouses and guests of the APEC conference to participate in conference activities. This year's options include:

SAN ANTONIO AMERICAN INDIAN MISSION TOURS

Monday, March 5, 2018 | 9:00 a.m. – 12:00 p.m.

- Yanguana Mission Heritage Tour with a cultural presentation and native food sampling included
- > A traditional Native lunch will be prepared for all attendees
- > COST: \$100 per person

SAN ANTONIO BOTANICAL GARDENS

Tuesday, March 6, 2018 | 8:30 a.m. – 12:00 p.m.

- > One hour guided tour of beautiful Botanical Gardens with tour guide
- Chef demonstration with gourmet food sampling included
 Self-Guided Scavenger Hunt for guests to explore more of
- the gardens on their own > COST: \$100 per person

Notes

Sponsor Meetings

IAS Meetings

Tuesday, March 6, 2018

IEEE PELS Meetings

Sunday, March 4, 2018	
International Future Energy Challenge (IFEC) Workshop	
FEPPCON Steering Committee	
Asian Power Electronics Coordination Committee	
EBL Leadership (Members Only)	
New Administrative Committee Member Training	1:00 p.m. – 2:00 p.m ROOM 6A
PELS Exec Team Pre -Strategy (Officers Only)	3:00 p.m. – 5:00 p.m ROOM 5
Monday, March 5, 2018	
Empower a Billion Lives Steering & Regional Committee	
Electronics Transformers Technical Committee	
ITRW Executive Committee	
PELS Bylaws and Constitution	
PELS Membership Committee	
PELS Conferences Committee Business (Members Only)	
ITRW Standards Groups	
PELS Fellows Committee	
PELS Chapter Chair Forum	
PELS TC & Academic Affairs Chairs Lunch	
Magazine & Industry Advisory Board	6:00 p.m. – 7:00 p.m ROOM 7A
Mentorship Round Tables (Paid Registration Required)	7:30 p.m. – 9:30 p.m ROOM 4
Tuesday, March 6, 2018	
PELS TC1 - Power and Control Core Technologies	
IEEE Journal of Emerging and Selected Topics on Power Electronics (JESTPE) Steering Committee	
SPEC Steering	
PELS 30th Anniversary Committee	
ECCE Asia Coordination Committee	
PELS TC7- Intelec	
Mentorship Committee	

IEEE Journal of Emerging and Selected Topics on Power Electronics (JESTPE) Editorial Board	:00 a.m. – 12:00 p.m ROOM 4
PELS TC3 Motor Drives & Actuators	:00 a.m. – 12:00 p.m ROOM 7A
Women in Engineering (WIE) Roundtable	00 p.m. – 1:30 p.m ROOM 7A
CPSS Transactions on Power Electronics and Applications New Journal	:00 p.m. – 2:00 p.m ROOM 6B
ITRW IAB Meeting	:00 p.m. – 2:00 p.m ROOM 6A
PELS TC4- / IAS Jt Vehicle and Transportation Systems1:0	:00 p.m. – 2:30 p.m ROOM 7A
Empower A Billion Lives (EBL) 2:3	:30 p.m. – 3:30 p.m ROOM 6B
eGrid Steering Committee	:30 p.m. – 3:30 p.m ROOM 7A
PELS TC6 - High Performance and Emerging Technologies	:30 p.m. – 4:00 p.m ROOM 6A
PELS TC2 - Power Conversion Systems and Components	:30 p.m. – 5:00 p.m ROOM 6B
PEDG Steering Committee	:30 p.m. – 5:00 p.m ROOM 7A
PELS TC5 - Sustainable Energy Technical Committee	:00 p.m. – 6:30 p.m ROOM 6A
Magazine & Industry Advisory Board	:00 p.m. – 7:00 p.m ROOM 7A
IEEE IAS/PELS Young Professional Reception	Ω_{0} nm = 9.00 nm RIO RIO CANTINO ESTRELLA ROOM
Wednesday, March 7, 2018	
Wednesday, March 7, 2018	8:00 a.m. – 9:00 a.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. .8:	8:00 a.m. — 9:00 a.m ROOM 6A 9:00 a.m. — 10:30 a.m ROOM 4
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting .9:	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting .9: PELS Products Committee .9:	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting PELS Products Committee. .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee. .2:0 PELS Technical Operations Committee	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC 1:00 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting PELS Products Committee. .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee.	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC 1:00 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting PELS Products Committee. .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee. .2:0 PELS Technical Operations Committee	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC 1:00 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. .8: Cyber Physical Security Meeting .9: PELS Products Committee. .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee. .2:0 PELS Technical Operations Committee .2:3 ITRW Steering Committee .2:3 Thursday, March 8, 2018 .8:	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6A 1:30 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 p.m. – 9:00 a.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. Cyber Physical Security Meeting .9: PELS Products Committee .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee .2: PELS Technical Operations Committee .2: TTRW Steering Committee .2: Thursday, March 8, 2018	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6A 1:30 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 p.m. – 9:00 a.m ROOM 6A
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast .8: Cyber Physical Security Meeting .9: PELS Products Committee .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee .2:0 PELS Technical Operations Committee .2:3 ITRW Steering Committee .2:3 Thursday, March 8, 2018 .8: PELS Conference Committee .9: PELS Administrative Committee .2:0	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC 1:00 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 a.m. – 9:00 a.m ROOM 6A 1:30 a.m. – 9:00 a.m ROOM 6A 1:30 a.m. – 5:30 p.m ROOM 6BC
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. .8: Cyber Physical Security Meeting .9: PELS Products Committee .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee .2:0 PELS Technical Operations Committee .2:3 ITRW Steering Committee .2:3 Thursday, March 8, 2018 .8: PELS Conference Committee .9: PELS Conference Committee .9: PELS Administrative Committee .2:0 PELS Administrative Committee .6:3	8:00 a.m. – 9:00 a.m ROOM 6A 9:00 a.m. – 10:30 a.m ROOM 4 9:30 a.m. – 11:30 a.m ROOM 6A 1:30 a.m. – 2:00 p.m ROOM 6BC 1:00 p.m. – 2:30 p.m ROOM 7A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 p.m. – 4:30 p.m ROOM 6A 1:30 a.m. – 9:00 a.m ROOM 6A 1:30 a.m. – 9:00 a.m ROOM 6A 1:30 a.m. – 5:30 p.m ROOM 6BC
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. .8: Cyber Physical Security Meeting .9: PELS Products Committee. .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee. .2:0 PELS Technical Operations Committee .2:3 ITRW Steering Committee .2:3 Thursday, March 8, 2018 .8: PELS Conferences Committee .9: PELS Administrative Committee .2:0 PELS Administrative Committee Dinner. .6:3 Friday, March 9, 2018	8:00 a.m 9:00 a.m ROOM 6A 9:00 a.m 10:30 a.m ROOM 4 9:30 a.m 11:30 a.m ROOM 6A 9:30 a.m 2:00 p.m ROOM 6A 1:30 a.m 2:30 p.m ROOM 6BC 1:00 p.m 2:30 p.m ROOM 6A 1:30 p.m 4:30 p.m ROOM 6A 1:30 p.m 4:30 p.m ROOM 6A 1:30 p.m 4:30 p.m ROOM 6A 1:30 p.m 5:30 p.m ROOM 6A 1:30 p.m 5:30 p.m ROOM 6BC 1:30 p.m 9:30 p.m ROOM 6BC
Wednesday, March 7, 2018 Women In Engineering (WIE) Breakfast. .8: Cyber Physical Security Meeting .9: PELS Products Committee .9: IEEE Transactions on Power Electronics Editorial Board .11: PELS Standards Committee .2:0 PELS Technical Operations Committee .2:3 ITRW Steering Committee .2:3 Thursday, March 8, 2018 .8: PELS Conference Committee .9: PELS Conference Committee .9: PELS Administrative Committee .2:0 PELS Administrative Committee .6:3	8:00 a.m 9:00 a.m ROOM 6A 9:00 a.m 10:30 a.m ROOM 4 9:30 a.m 11:30 a.m ROOM 6A 9:30 a.m 2:00 p.m ROOM 6A 9:00 p.m 2:30 p.m ROOM 6BC 9:00 p.m 4:30 p.m ROOM 6A 9:00 a.m 4:30 p.m ROOM 6A 9:00 a.m 9:00 a.m ROOM 6A 9:00 a.m 8:00 p.m

Tuesday, March 6, 2018 (continued)

Sponsor Meetings

PSMA Meetings

Saturday, March 3, 2018
PSMA/PELS Workshop on High Frequency Magnetics
PSMA/PELS Workshop on Capacitors
Sunday, March 4, 2018
PSMA/ CPSS Reception WATERFALL PATIO/LDR ROOM
Monday, March 5, 2018
PSMA Annual Meeting - followed by March BoD Meeting
Tuesday, March 6, 2018
PSMA Industry-Education / APEC Travel Support Committee Meeting
PSMA Energy Management Committee Meeting
PSMA Power Technology Roadmap Committee Meeting
PSMA Marketing Committee Meeting
PSMA Magnetics Committee MeetingR00M 8A
PSMA Packaging Committee MeetingR00M 8B
Wednesday, March 7, 2018
PSMA Reliability Committee MeetingR00M 8A
PSMA Transportation Committee MeetingR00M 8B
PSMA Capacitor Committee MeetingR00M 8A
PSMA Energy Harvesting Committee Meeting
PSMA Semiconductor Committee MeetingROOM 8A
PSMA Safety & Compliance Committee Meeting

THE PREMIER GLOBAL EVENT IN APPLIED POWER ELECTRONICS™

Conference Progra

Conference Program

Sunday March 4, 2018

.

. . . .

8:00 a.	m. – 5:00 p.m.
Regist	ration
	EGISTRATION
	m. — 5:00 p.m.
Mobile	App Help Desk
Main Lo)BBY
	m. — 9:00 a.m.
	i ter Breakfast AIR BALLROOM C3
	m. — 1:00 p.m.
Profes	sional Education Seminars
(for det	ailed information see page 122)
S01:	Fundamentals of Switch Mode Power Conversion
501.	Bob White
	<i>Embedded Power Labs, United States</i> ROOM 217D
S02:	Modern Soft Switching Technologies
302.	lonel Jitaru
	Rompower Energy Systems Inc., United States ROOM 206
S03:	Thermal and Daliability Medalling of Device
303:	Thermal and Reliability Modelling of Power Electronics Systems
	Amir Sajjad Bahman, Frede Blaabjerg, Francesco lannuzzo Aalborg University, Denmark
	ROOM 217A
S04:	WBG Switching Circuits: Design, Test, Devices
	and Applications
	Edward Shelton ⁴ , Patrick Palmer ⁴ , Alan Mantooth ³ , Brian Zahnstecher ² , Geoff Haynes ¹
	¹ Inspirit Ventures, United Kingdom; ² Power Rox Inc, United States; ³ University of Arkansas, United States;
	⁴ University of Cambridge, United Kingdom
	ROOM 214AB
S05:	High-Efficiency Single-Phase Inverter Design –
	VT-FEEC Approach for Google Little Box Challenge Jason Lai ¹ , Lanhua Zhang ²
	¹ Virginia Tech, United States, ² Texas Instruments
	ROOM 214CD

CONFERENCE AND APEC. 2×18

S06:	Power Quality Control in Hybrid AC/DC Microgrids Yunwei Li, Farzam Nejabatkhah <i>University of Alberta, Canada</i> ROOM 217BC	M	onday arch 5, 2018
2:30 p Profes	.m. – 6:00 p.m. ssional Education Seminars tailed information see page 126)	7:00 a Prese i HEMISF	.m. – 8:00 a.m. nter Breakfast FAIR BALLROOM C3
S07 :	Electromagnetic Interference and Compatibility for Power Electronics Engineers Graham Town <i>Macquarie University, Australia</i> ROOM 217D	7:00 a Regist WEST F	.m. – 6:00 p.m. tration REGISTRATION .m. – 6:00 p.m.
S08 :	New High-Frequency Magnetics Circuit Models Ray Ridley <i>Ridley Engineering US, United States</i> ROOM 214CD	MAIN L	e App Help Desk OBBY .m. – 10:00 a.m.
S09:	Advanced Thermal Management Technologies Peter Ritt, Devin Pellicon Advanced Cooling Technologies, United States ROOM 217A	Spous Rio Vis	e Breakfast TA ROOM at MARRIOTT RIVERCENTER
S10:	Designing Reliable and High Density Power Supplies with GaN Paul Brohlin, Masoud Beheshit, Sandeep Bahl, Serkan Dusmez, Ted Chen Texas Instruments Inc., United States	Profes	.m. – 12:00 p.m. ssional Education Seminars tailed information see page 130) Gate Driver Design for IGBT an Devices and Modules
S11:	ROOM 214AB Power Semiconductors for Traction Inverters in Vehicles: from Discretes to Power Modules, from Silicon to Wide Band Gap Devices		David Levett, Tim Frank, Dave Divi Infineon, United States ROOM 217BC
	Andre Christmann, David Levett Infineon Technologies Americas Corp., United States ROOM 206	S14:	Closing the Feedback Loop Thu and Analysis Christophe Basso ON Semiconductor, France
S12:	Power Converters for Energy Storage Applications – Analysis and Design from Theory to Practice Petar Grbovic HUAWEI Technologies Dusseldorf GmbH, Germany ROOM 217BC	S15:	ROOM 214CD International Product Complian Certifications – Safety and EM John Allen ¹ , Mark Montrose ² , Jeft ¹ IEEE Product Safety Engineering S ² Montrose Compliance Services, In ³ Intel Corporation, United States

nday rch 5, 2018

Gate Driver Design for IGBT and SiC Based Power

Closing the Feedback Loop Through Simulation

Certifications – Safety and EMC Compliance 101 John Allen¹, Mark Montrose², Jeff Pasternak³

¹IEEE Product Safety Engineering Society, United States; ²Montrose Compliance Services, Inc., United States;

International Product Compliance and

³Intel Corporation, United States

ROOM 206

EPC, United States ROOM 214AB

S16:

David Levett, Tim Frank, Dave Divins

.

CONFERENCE AND APEC. 2+18

Maximizing GaN FET and IC Performance, Not Just a Drop in Replacement of MOSFETs Michael de Rooij, Alex Lidow, David Reusch, John Glaser

Lange of the local division of the local div
~

S17: Optimizing Power Converter Topology and Module Selection in 1500V Solar Inverters Kevork Haddad², Bernhard Eichler¹, Paul Drexhage² ¹SEMIKRON Elekronik GmbH&Co. KG, Germany; ²SEMIKRON Inc., United States ROOM 217A S18: Small-Signal Stability and Subsystem Interactions

Small-Signal Stability and Subsystem Interactions in Distributed Power Systems with Multiple Converters (II): 3-Phase AC Systems Jinjun Liu³, Rolando Burgos², Paolo Mattavelli¹, Dushan Borojevich² ¹University of Padova, Italy; ²Virginia Tech, United States; ³Xi'an Jiaotong University, China

9:00 a.m. – 12:00 p.m.

R00M 217D

Spouse and Guest Tour American Indians in Texas Mission Tour (Registration Required) departs from MARRIOT RIVERCENTER LOBBY

1:15 p.m. – 5:00 p.m.

Plenary Session (for detailed information see page 136) HEMISFAIR BALLROOM C1/C2

1:30 p.m. – 2:00 p.m.

Power: A Fundamental Ingredient of Advanced Science and Applied Technology

Adam L. Hamilton P.E., *President and Chief Executive Officer, Southwest Research Institute (SwRI®)*

2:00 p.m. – 2:30 p.m.

Vienna Rectifier and Beyond

Dr. Johann W. Kolar, *Director Power Electronic Systems* Laboratory, ETH Zurich

2:30 p.m. – 3:00 p.m.

Moving from Si to SiC from the End User's Perspective

Dr. Muhammad Nawaz, *Principal Scientist, ABB Corporate Research*

3:00 p.m. – 3:30 p.m.

Break

3:30 p.m. – 4:00 p.m.

WPT: from $\mu\text{W/cm2}$ Harvesting to kW Capacitive Vehicle Powering

Zoya Popovic, *Distinguished Professor and Lockheed Martin Endowed Chair, Electrical, Computer and Energy Engineering, University of Colorado, Boulder*

4:00 p.m. – 4:30 p.m.

3D Power Packaging made Real with Embedded Component and Substrate Technologies

Dr. Markondeya R. Pulugurtha, *Associate Research Director, Georgia Tech - PRC*

4:30 p.m. – 5:00 p.m.

Does Power Efficiency Improve with Consolidation in the Semiconductor Industry?

Hans Stork, Senior Vice President and Chief Technology Officer, ON Semiconductor

5:00 p.m. – 8:00 p.m.

Exhibit Hall Welcome Reception EXHIBIT HALL 3/4

8:00 p.m. – 10:00 p.m.

MicroMouse Contest EXHIBIT HALL 4B

Tuesday March 6, 2018

.

7:00 a.m. - 8:00 a.m.

.

Presenter Breakfast HEMISFAIR BALLROOM C3

7:00 a.m. – 5:00 p.m.

Registration WEST REGISTRATION

Luesas

7:00 a.m. – 5:00 p.m.

Mobile App Help Desk

MAIN LOBBY

8:00 a.m. – 10:00 a.m.

Spouse and Guest Breakfast RIO VISTA ROOM at MARRIOTT RIVERCENTER

8:30 a.m. - 12:00 p.m.

Spouse and Guest Tour Tour of San Antonio Botanical Gardens

(Registration Required) departs MARRIOTT RIVERCENTER LOBBY

8:30 a.m. – 11:55 a.m.

ISO1: Latest Advancements in Device and Package Technology for High Power, High Frequency Switching Device ROOM 206

SESSION CHAIRS: Tim McDonald, *Infineon Technologies* Ranbir Singh, *GeneSiC Semiconductor*

8:30 a.m. – 8:55 a.m.

IS01.1: GaN Power ICs Enable Breakthroughs in Adapter Performance Dan Kinzer Navitas Semiconductor United States

8:55 a.m. - 9:20 a.m.

	0.00 u.m. 0.20 u.m.
IS01.2:	Industry's First 1200V Half Bridge Module based on GaN Technology Sharon Apter, David Shapiro, Valery Verpinsky. Lev Stessin, Gregory Bunin, Tamara Baksht VisIC Technologies Israel
	9:20 a.m. – 9:45 a.m.
IS01.3:	The Value of emode GaN HEMTs for High Density and High Efficiency Applications Gerald Deboy, Matthias Kasper, Alfredo Medina, Steffen Metzger, Manfred Schlenk Infineon Technologies Austria AG Austria
	9:45 a.m. – 10:10 a.m.
IS01.4:	Trench Based SiC Power MOSFETs – an Example How to Merge Performance, Robustness and Further Application Relevant Features Peter Friedrichs Infineon Technologies Germany
	10:40 a.m. – 11:05 a.m.
IS01.5:	Improving Totem-Pole PFC and on Board Charger Performance with Next Generation Components Anup Bhalla, United Silicon Carbide United States
	11:05 a.m. – 11:30 a.m.
IS01.6:	SiC Power MOSFETs for Emerging High Voltage Applications Ranbir Singh GeneSiC United States
	11:30 a.m. – 11:55 a.m.
IS01.7:	Design of High Performance Power Conversion Systems for More Electric Aircrafts Shweta Sanjeev Microsemi Corporation United States
••••	
	n. – 11:55 a.m.
ROOM 20	gh Frequency Magnetics - Winding Design 7
	Chairs: ert, <i>PSMA</i>
Stephen	Carlsen, <i>Raytheon</i>
	8:30 a.m. – 8:55 a.m.
IS02.1:	Core Loss Initiative: Technical

	8:55 a.m. – 9:20 a.m.
IS02.2:	GaN Technology as an Enabler for Higher Efficiency Magnetics Ionel Dan Jitaru Rompower Energy Systems Inc., United States
	9:20 a.m. — 9:45 a.m.
IS02.3:	Winding Capacitance Ray Ridley <i>Ridley Engineering, United States</i>
	9:45 a.m. – 10:10 a.m.
IS02.4:	Foil Windings for SMPS Inductors and Transformers Weyman Lundquist West Coast Magnetics, United States
IS02.5:	Litz Wire – When is it an Advantage?
1302.3.	George Slama Würth Electronics, United States
	11:05 a.m. – 11:30 a.m.
IS02.6:	An Application-Oriented Determination of Losses within High Frequency Power Inductors Stefan Ehrlich, Christopher Joffe, Andreas Rosskopf Fraunhofer IISB, Germany
	11:30 a.m. – 11:55 a.m.
IS02.7 :	A Spice Model for Windings Ray Ridley <i>Ridley Engineering, United States</i>
8:30 a.n	n. – 11:55 a.m.
ISO3: Ca Applica ROOM 20	
	CHAIBS:
Ralph K	errigan, <i>NWL</i> eber, <i>FTW</i>
	8:30 a.m. – 8:55 a.m.
IS03.1:	PLZT (Lead-Lanthanum-Zirconium-Titanate) Capacitors for High Frequency Operation Suresh Chandran, Matt Reynolds

8:55 a.m. – 9:20 a.m. Switched Capacitor Invertors with Ceramics Wilmer Companioni

KEMET, United States

9:20 a.m. – 9:45 a.m.

IS03.2:

IS03.3:	How Advances in Flat Aluminum Electrolytic Capacitors are Solving Today's Power Design	
	Problems Scott Franco	
	Cornell Dubilier Electronics, United States	

9:45 a.m. - 10:10 a.m.

IS03.4: DC Link Film Capacitors with Ripple Current Frequencies at Least 50 Khz Ralph Kerrigan *NWL, United States*

10:40 a.m. – 11:05 a.m.

IS03.5: High Temperature Capacitor Applications in More Electric Aircraft Jeff Lawler W.L. Gore & Associates, Inc., United States

11:05 a.m. - 11:30 a.m.

IS03.6: Aluminum Polymer Capacitors Pierre Lohrber Würth Electronik, Germany

11:30 a.m. – 11:55 a.m.

IS03.7: Case Study: Small Size Stack Capacitors Replace Aluminum Electrolytic Capacitors in SMPS Ron Demcko, Eric DeRose AVX Corporation, United States

8:30 a.m. – 11:55 a.m.

ISO4: Comparisons and Tradeoffs of Integrated Gate Driver Isolation Technologies

R00M 212

SESSION CHAIRS:

Kevin Parmenter, Excelsys Technologies

Jim Spangler, Independent

8:30 a.m. – 8:55 a.m.

IS04.1: Turn-on Performance Comparison of Current-Source vs. Voltage-Source Gate Drivers Wolfgang Frank, Ziqing Zheng Infineon Technologies AG ,Germany

United States

luesday

	8:55 a.m. – 9:20 a.m.	
IS04.2:	Gate Drivers Market Evolution: Coreless Isolation and WBG Specific Solutions Mattin Grao Txapartegi, Pierric Gueguen Yole Developpement, France	IS
	9:20 a.m. – 9:45 a.m.	
IS04.3:	Unleash SiC MOSFETs – Extract the Best Performance Xuning Zhang, Gin Sheh, Levi Gant, Sujit Banerjee Monolith Semiconductor Inc., United States	IS
	9:45 a.m. – 10:10 a.m.	
IS04.4:	Isolation Strategies for High Power Michael Hornkamp Power Integration, United States	IS
	10:40 a.m. — 11:05 a.m.	
IS04.5:	Gate Driver Timing Specification Requirements for WBG Devices Ryan Schnell Analog Devices, Inc., United States	IS
	11:05 a.m. – 11:30 a.m.	
IS04.6:	A Deep Dive of Isolated Gate Driver Robustness – dv/dt (CMTI) and di/dt Wei Zhang Texas Instruments, United States	IS
	11:30 a.m. – 11:55 a.m.	
IS04.7:	Improvements of Partial Discharge Screening Results Wolfgang Frank, Matthias Stecher Infineon Technologies AG, Germany,	IS
••••		• •
	n. – 11:55 a.m.	8:3
ROOM 2	nergy Harvesting 13	TO Ro
Session	N CHAIRS:	А
Michael	l Hayes, <i>Tyndall National Institute</i> ahnstecher, <i>PowerRox</i>	Ha Ru
	8:30 a.m. – 8:55 a.m.	
IS05.1:	IoT Sensors Powered by Solid State Batteries and Harvested Energy Gary Johnson, Denis Pasero lika Technologies, United Kingdom	TO

8:55 a.m. – 9:20 a.m.

05.2:	Chip Scale Thermoelectric Generator for Smart Agriculture Marc Dunham, Jane Cornett, Baoxing Chen ADI, United States
	9:20 a.m. – 9:45 a.m.
05.3:	Techniques for Reducing ULP Device Power Consumption Ivan O'Connell <i>MCCI Ireland, Ireland</i>
	9:45 a.m. — 10:10 a.m.
05.4:	Challenges and Solutions for Implementing Energy Harvesting Powered Solutions Dusan Vuckovic Delta Force, Denmark
	10:40 a.m. – 11:05 a.m.
05.5:	Indoor Energy Harvesting with Photovoltaics Dan Stieler <i>Powerfilm Solar, United States</i>
	11:05 a.m. – 11:30 a.m.
05.6:	Vibrational Energy Harvester System Integration use Cases & Commercialization Considerations Roy Freeland Perpetuum, United Kingdom
	11:30a.m. – 11:55 a.m.
05.7:	Energy Harvesting Real-World Functional Demonstrations Session Brian Zahnstecher PowerRox, United States
 30 a m	n. – 12:00 p.m.
	ree-Phase AC-DC Converters
0M 21	4A
C-DC (Converters
	lang, ShanghaiTech University ou, GaN Systems Inc.
1.1:	8:30 a.m. – 8:50 a.m. High Power Three-Level Rectifier Comprising

1.1: High Power Inree-Level Rectifier Comprising SiC MOSFET and Si Diode Hybrid Power Stage Xiaolong Yue¹, Xiongfei Wang¹, Frede Blaabjerg¹, Dushan Boroyevich², Rolando Burgos², Fred Lee² ¹Aalborg University, Denmark; ²Virginia Polytechnic Institute and State University, United States

Tuesday

CONFERENCE AND APEC. 2+18 4

T01.2:	8:50 a.m. – 9:10 a.m. A Novel Soft Switching ZVS, Sinusoidal Input Boundary Current Mode Control of 6-Switch Three Phase 2-Level Boost Rectifier for Active and Active + Reactive Power Generation Nidhi Haryani, Bingyao Sun, Rolando Burgos <i>CPES, VT, United States</i>
T01.3:	9:10 a.m. – 9:30 a.m. Critical-Mode-Based Soft-Switching Modulation for Three-Phase Rectifiers Zhengrong Huang ² , Zhengyang Liu ² , Fred Lee ² , Qiang Li ² , Furong Xiao ¹ ¹ Beijing Institute of Technology, China; ² CPES, Virginia Tech, United States
T01.4:	9:30 a.m. – 9:50 a.m. An Adaptive Selection of Intermediate Bus Voltage to Optimize Efficiency in a Universal Input Three- Phase Power Factor Correction Circuit Hamidreza Hafezinasab ² , Wilson Eberle ² , Deepak Gautam ¹ , Chris Botting ¹ ¹ Delta-Q Technologies Corp, Canada; ² University of British Columbia, Canada
T01.5:	9:50 a.m. – 10:10 a.m. Analysis of One Phase Loss Operation of Three- Phase Isolated Buck Matrix-Type Rectifier with a Boost Switch Jahangir Afsharian ² , Dewei Xu ² , Bin Wu ² , Bing Gong ¹ , Zhihua Yang ¹ ¹ Murata Power Solution, Canada; ² Ryerson University, Canada
T01.6:	10:40 a.m. – 11:00 a.m. A Four-Switch Three-Phase AC-DC Converter with Galvanic Isolation Javad Khodabakhsh, Gerry Moschopoulos <i>Western University, Canada</i>
T01.7 :	11:00 a.m. – 11:20 a.m. A New Three-Phase Soft-Switched Bridgeless AC/DC Step-Up Converter with Current Fed Voltage Doubler Modules for DC Grid in Wind Systems Mehdi Abbasi, John Lam <i>York University, Canada</i>
T01.8:	11:20 a.m. – 11:40 a.m. Modular Three-Phase AC-DC LED Driver Based on Summing the Light Output of Each Phase Ignacio Castro, Manuel Arias, Diego G. Lamar, Marta M. Hernando, Javier Sebastian <i>University of Oviedo, Spain</i>

APEC. 2 18 CONFERENCE AND EXPOSITION

Tuesday

48

T01.9:	11:40 a.m. – 12:00 p.m. A New, Two-Switch, Isolated, Three-Phase AC-DC Converter Yungtaek Jang ² , Milan Jovanovic ² , Misha Kumar ² , Kurtis High ² , Yihua Chang ¹ , Yiwei Lin ¹ , Chun-Liang Liu ¹ ¹ Delta Electronics, Inc., Taiwan; ² Delta Products Corporation, United States
8:30 a.ı	n. – 12:00 p.m.
T02: Hy ROOM 2	brid DC-DC Converters 14B
DC-DC	Converters
	ezgin <i>, Infineon</i> ng, <i>IBM T.J. Watson Research Center</i>
T02.1:	8:30 a.m. – 8:50 a.m. A Multi-Level, Multi-Phase Buck Converter with Shared Flying Capacitor for VRM Applications Gianluca Roberts, Nenad Vukadinović, Aleksandar Prodić University of Toronto, Canada
T02.2:	8:50 a.m. – 9:10 a.m. An Ultra Efficient Composite Modular Power Delivery Architecture for Solar Farm and Data Center Dong Cao ² , Xiaofeng Lyu ² , Yanchao Li ² , Ze Ni ² , Jalen Johnson ² , Shuai Jiang ¹ , Chenhao Nan ¹ ¹ Google Inc., United States; ² North Dakota State University, United States
T02.3 :	9:10 a.m. – 9:30 a.m. Switched Tank Converters Shuai Jiang, Chenhao Nan, Xin Li, Chee Chung, Mobashar Yazdani <i>Google Inc., United States</i>
T02.4:	9:30 a.m. – 9:50 a.m. Switched Tank Converter Based Partial Power Architecture for Voltage Regulation Applications Yiou He ² , Shuai Jiang ¹ , Chenhao Nan ¹ ¹ Google Inc., United States; ² Massachusetts Institute of Technology, United States
T02.5:	9:50 a.m. – 10:10 a.m. PCB Embedded Inductor for High-Frequency ZVS SEPIC Converter Yi Dou, Ziwei Ouyang, Prasanth Thummala, Michael Andersen <i>Technical University of Denmark (DTU), Denmark</i>

CONFERENCE AND APEC. 2*18

Tuesday

49

T02.6:	10:40 a.m. – 11:00 a.m. Design and Evaluation of Hybrid Switched Capacitor Converters for High Voltage, High Power Density Applications Joshua Stewart, James Richards, Jarod Delhotal, Jason Neely, Jack Flicker, Robert Brocato, Lee Rashkin <i>Sandia National Labs, United States</i>	T03.3:	9:10 a.m. – 9:30 a.m. A 10 kV DC Transformer (DCX) Based on Current Fed SRC and 15 kV SiC MOSFETs Qianlai Zhu ¹ , Li Wang ¹ , Liqi Zhang ² , Alex Q. Huang ² ¹ North Carolina State University, United States; ² University of Texas at Austin, United States	
T02.7:	11:00 a.m. – 11:20 a.m. Control Technique for Reliable Operation of the Synchronous Series Capacitor Tapped Inductor Converter Francesco Bez ² , Giovanni Bonanno ² , Luca Corradini ² , Cristian Garbossa ¹	T03.4:	9:30 a.m. – 9:50 a.m. Cascaded Quadruple Active Bridge Structures for Multilevel DC to Three-Phase AC Conversion Prasanta Achanta ² , Dragan Maksimovic ² , Brian Johnson ¹ ¹ National Renewable Energy Laboratory, United States; ² University of Colorado Boulder, United States	
T02.8 :	¹ Infineon Technologies Italia Srl, Italy; ² University of Padova, Italy 11:20 a.m. – 11:40 a.m. A Resonant Switched Capacitor Based 4-to-1 Bus	T03.5:	9:50 a.m. – 10:10 a.m. Single-Phase Transformerless Dual Buck-Based Grid-Connected Inverter Lucas Munaretto, Marcelo Lobo Heldwein <i>Federal University of Santa Catarina, Brazil</i>	
T02.9:	Converter Achieving 2180 W/In ³ Power Density and 98.9% Peak Efficiency Zichao Ye, Yutian Lei, Robert Pilawa-Podgurski University of Illinois at Urbana-Champaign, United States 11:40 a.m. – 12:00 p.m. Active Canacitor Voltage Balancing Control for	T03.6:	10:40 a.m. – 11:00 a.m. Common-Ground Transformerless Inverter for Solar Photovoltaic Module Saad UI Hasan ¹ , Benjamin Shaffer ² , Hassan. A Hassan ² , Mark. J Scott ² , Yam Siwakoti ³ , Graham. E Town ¹ ¹ Macquarie University, Australia; ² Miami University,	
 T02.9: Active Capacitor Voltage Balancing Control for Three-Level Flying Capacitor Boost Converter Hung-Chi Chen, Che-Yu Lu, Wei-Hsiang Lien National Chiao Tung University, Taiwan 8:30 a.m. – 12:00 p.m. T03: Power Electronics for Utility Interface – Structures & Topologies 		T03.7:	United States; ³ University Technology Sydney, Australia 11:00 a.m. – 11:20 a.m. Auxiliary Power Supply for Medium-Voltage Power Electronics Systems Jehyuk Won, Gholamreza Jalali, Xinyu Liang, Chi Zhang, Srdjan Srdic, Srdjan Lukic North Carolina State University, United States	
ROOM 2				
Power Electronics for Utility Interface Tiefu Zhao <i>, UNC Charlotte</i> Praveen Jain <i>, Queen's University</i>		T03.8:	Multi-Mode Operations for on-Line Uninterruptible Power Supply Jinghang Lu, Mehdi Savaghebi, Yajuan Guan, Mingshen Li, Josep Guerrero Aalborg University, Denmark	
T03.1:	8:30 a.m. – 8:50 a.m. 50-Kw 1kV DC Bus Air-Cooled Inverter with 1.7 kV SiC MOSFETs and 3D-Printed Novel Power Module Packaging Structure for Grid Applications Madhu Chinthavali, Zhiqiang Jack Wang, Steven Campbell, Tong Wu, Burak Ozpineci <i>Oak Ridge National Laboratory, United States</i> 8:50 a.m. – 9:10 a.m.	T03.9:	11:40 a.m. – 12:00 p.m. Controller and EMI Filter Design for Modular Front- End Solid-State Transformer Jung-Muk Choe ² , Chih-Shen Yeh ² , Oscar Yu ² , Moonhyun Lee ² , Hao Wen ² , Jih-Sheng Lai ² , Lanhua Zhang ¹ ¹ Texas Instruments, United States; ² Virginia Polytechnic Institute and State University, United States	
T03.2 :	Design and Test of the Bidirectional Solid-State Switch for an 160kV/9kA Hybrid DC Circuit Breaker			

APEC. 2+18 CONFERENCE AND EXPOSITION 50

Weijie Wen, Yulong Huang, Rong Zeng State Key Lab. of Power Systems, Department of Electrical Engineering, Tsinghua University, China

Tianyu Wei, Zhanqing Yu, Zhengyu Chen, Xiangyu Zhang,

<u>l'uesda</u>

8:30	a.m.	- 12:0	0 p.m.

T04: Faults in Electric Machines And Drives ROOM 214D

Motor Drives and Inverters

Joshua Hawke, *Naval Surface Warfare Center* Siavash Pakdelian, *University of Massachusetts at Lowell*

8:30 a.m. - 8:50 a.m.

T04.1:	Effect of Asymmetric Layout of IGBT Modules on Reliability of Power Inverters in Motor Drive System Ui-Min Choi, Ionut Vernica, Frede Blaabjerg
	Aalborg University, Denmark
	8:50 a.m. – 9:10 a.m.

T04.2: Determining the Operating Region for Demagnetization-Free Fault Tolerant Control of Multiphase PMa-SynRM Md. Zakirul Islam, Akm Arafat, Seungdeog Choi The University of Akron, United States

.

9:10 a.m. – 9:30 a.m.

ueso

T043: Research on Short Circuit Operation Mechanism and Current Limiting Strategy of Single Phase Inverter Zirui Fu, Fanghua Zhang, Shixian Li, Wuji Meng,

Chunjuan Zhang Nanjing University of Aeronautics and Austronautics, China

9:30 a.m. – 9:50 a.m.

T04.4: Study of Voltage Spikes and Temperature Rise in Power Module Based Integrated Converter for 48 V 20 kW Electrically Excited Synchronous Machines Junfei Tang¹, Yujing Liu¹, Yashovardha Rastogi³, Nimananda Sharma¹, Tanmay Shukla² ¹Chalmers University of Technology, Sweden; ²Segula Technologies AB, Sweden; ³Volvo Cars Corporation, Sweden

9:50 a.m. - 10:10 a.m.

 T04.5:
 Post-Fault Operation for Five-Phase Induction Machines Under Single-Phase Open Using Symmetrical Components

Shan He¹, Jin Huang¹, Min Kang² ¹Department of Electrical Engineering, Zhejiang University, China; ²Department of Electrical Engineering, Zhejiang University of Science and Technology & Hangzhou Fushe, China

T04.6:	10:40 a.m. – 11:00 a.m. Fault-Tolerant Control Scheme for Modular Multilevel Converter Based on Sorting Algorithm Without Reserved Submodules Seok-Min Kim ¹ , Kyo-Beum Lee ¹ , June-Seok Lee ² ¹ Ajou University, Korea; ² KRRI, Korea
T04.7:	11:00 a.m. – 11:20 a.m. Lifetime Benchmarking of Two DC-Link Passive Filtering Configurations in Adjustable Speed Drives Haoran Wang ¹ , Pooya Davari ¹ , Huai Wang ¹ , Dinesh Kumar ² , Firuz Zare ³ , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² Danfoss Drives A/S, Denmark; ³ The University of Queensland, Australia
T04.8:	11:20 a.m. – 11:40 a.m. A Novel Current-Mode Actuator Driver for Enhanced Piezoelectric Reliability Bernadette Kinzel, Frank Vanselow, Erkan Isa, Linus Maurer <i>Fraunhofer EMFT, Germany</i>
•••••	
	. – 12:00 p.m.
ROOM 21	ver Devices Modeling 7A
Modelin	ng and Simulation
	g , Ohio State University ned, University of Texas at San Antonio
T05.1:	8:30 a.m. – 8:50 a.m. A Modified Behavior SPICE Model for SiC BJT Shiwei Liang, Jun Wang, Zhigao Peng, Guanghui Chen, Xin Yin, Z.John Shen, Linfeng Deng <i>Hunan University, China</i>
T05.2:	8:50 a.m. – 9:10 a.m. TCAD Modeling of a Lateral GaN HEMT Using Empirical Data Michael Hontz ² , Rongming Chu ¹ , Raghav Khanna ² ¹ HRL Laboratories, LLC, United States; ² University of Toledo, United States
T05.3:	9:10 a.m. – 9:30 a.m. A Temperature Dependent Lumped-Charge Model for Trench FS-IGBT Yaoqiang Duan ² , Yong Kang ² , Francesco lannuzzo ¹ , lonut Trintis ¹ , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² Huazhong University of Science and Technology, China

T05.4:	9:30 a.m. – 9:50 a.m. An Automated SPICE Modeling Procedure Utilizing Static and Dynamic Characterization of Power FETs Andrew Sellers ² , Michael Hontz ² , Raghav Khanna ² , Andrew Lemmon ¹ , Ali Shahabi ¹ ¹ University of Alabama, United States; ² University of Toledo, United States
T05.5:	9:50 a.m. — 10:10 a.m. High-Accuracy Modelling of ZVS Energy Loss in Advanced Power Transistors Jaume Roig ¹ , German Gomez ¹ , Filip Bauwens ¹ , Basil Vlachakis ¹ , Maria Rogina ² , Alberto Rodriguez ² , Diego Lamar ² ¹ ON Semiconductor, Belgium; ² University of Oviedo, Spain
T05.6:	10:40 a.m. – 11:00 a.m. A Behavioral Transient Model of IGBT for Switching Cell Power Loss Estimation in Electromagnetic Transient Simulation Yanming Xu ² , Carl Ngai Man Ho ² , Avishek Ghosh ² , Dharshana Muthumuni ¹ ¹ Manitoba HVDC Research Centre, Canada; ² University of Manitoba, Canada
T05.7:	11:00 a.m. – 11:20 a.m. A Fast IGBT Model Considering the Dynamic Performance of Both IGBT and Antiparallel Diode Feng Zhang, Xu Yang, Wei Xue, Ruiliang Xie, Yang Li, Yilin Sha <i>Xi'an Jiaotong University, China</i>
T05.8:	11:20 a.m. – 11:40 a.m. Exploring the Behavior of Parallel Connected SiC Power MOSFETs Influenced by Performance Spread in Circuit Simulations Johanna Müting, Nick Schneider, Thomas Ziemann, Roger Stark, Ulrike Grossner <i>ETH Zurich, Switzerland</i>
T05.9:	 11:40 a.m. – 12:00 p.m. Analytic Model for Power MOSFET Turn-Off Switching Loss Under the Effect of Significant Current Diversion at Fast Switching Events Bai Nguyen², Xin Zhang¹, Andrew Ferencz¹, Todd Takken¹, Robert Senger¹, Paul Coteus¹ ¹IBM T. J. Watson Research Center, United States; ²IBM T. J. Watson Research Center & Washington State University, United States

APEC. 2 18 CONFERENCE AND EXPOSITION

8:30 a.m. – 12:00 p.m.

T06: Control of DC-DC Converters ROOM 217B

Control

. . .

	bu Qahouq, The University of Alabama
iviarun (Ordonez, The University of British Columbia
T06.1:	8:30 a.m. – 8:50 a.m. Low-Frequency Ripple-Shaping Controller for Operation of Non-Inverting Buck-Boost Converters Near Step-Up Step-Down Boundary Yuqing Zhang ² , Ivan Radović, Sheikh Ahsanuzzaman ² , Aleksandar Prodić, Giacomo Calabrese ¹ , Giovanni Frattini ¹ , Maurizio Granato ¹ ¹ Texas Instruments, Germany; ¹ Texas Instruments, Italy; ² University of Toronto, Canada
T06.2:	8:50 a.m. – 9:10 a.m. A Single Mode Load Tracking Voltage Mode Controller with Near Minimum Deviation Transient Response Tom Moiannou ² , Yanhui Liu ² , Aleksandar Prodic ² , Aleksandar Radic ¹ ¹ Appulse Power, Canada; ² University of Toronto, Canada
T06.3:	9:10 a.m. – 9:30 a.m. Near Time Optimal Recovery in a Digitally Current Mode Controlled Buck Converter Driving a CPL Rabisankar Roy, Santanu Kapat <i>IIT Kharagpur, India</i>
T06.4:	9:30 a.m. – 9:50 a.m. A Digital Robust Control Scheme for Dual Half- Bridge DC-DC Converters Maxime Tissières ¹ , Iman Askarian ³ , Majid Pahlevani ³ , André Rotzetta ² , Andy Knight ³ , Ioana Preda ² ¹ HEIA-FR, University of Applied Science of Western Switzerland, Switzerland; ² Institute ENERGY, University of Applied Science of Western Switzerland, Switzerland; ³ University of Calgary, Canada
T06.5:	9:50 a.m. – 10:10 a.m. △V/△t-Intervention Control Concept for Improved Transient Response in Digitally Controlled Boost Converters Samuel Quenzer-Hohmuth ² , Steffen Ritzmann ³ , Thoralf Rosahl ³ , Bernhard Wicht ¹ ¹ Leibniz University Hannover, Germany; ² Reutlingen University – Robert Bosch Center for Power Electronics, Germany; ³ Robert Bosch GmbH, Germany

Tuesday

T06.6 :	10:40 a.m. – 11:00 a.m. Control of Active Component of Current in Dual Active Bridge Converter Suyash Sushilkumar Shah, Subhashish Bhattacharya <i>North Carolina State University, United States</i>	T07.3:	9:10 a.m. – 9:30 a.m. Stability and Resonance Analysis and Improved Design of N-Paralleled Grid-Connected PV Inverters Coupled Due to Grid Impedance Bao Xie, Lin Zhou, Chen Zheng, Qianjin Zhang <i>Chongqing University, China</i>
T06.7:	11:00 a.m. – 11:20 a.m. Nonlinear Characteristics of DAB Converter and Linearized Control Method Anping Tong ² , Lijun Hang ¹ , Guojie Li ² , Jingjie Huang ² ¹ Hangzhou Dianzi University, China; ² Shanghai Jiaotong University, China	T07.4 :	9:30 a.m. – 9:50 a.m. A Common-Ground Single-Phase Five-Level Transformerless Boost Inverter for Photovoltaic Applications Ben Shaffer ² , Hassan Hassan ² , Mark Scott ² , Saad UI Hasan ¹ , Graham E. Town ¹ , Yam Siwakoti ³
T06.8:	11:20 a.m. – 11:40 a.m. New Digital Control Method for Improving Dynamic Response of Synchronous Rectified Flyback Converter with CCM and DCM Mode		¹ Macquarie University, Australia; ² Miami University, United States; ³ University of Technology Sydney, Australia
	Shen Xu, Xinpeng Kou, Chong Wang, Qinsong Qian, Weifeng Sun <i>Southeast University, China</i>	T07.5:	9:50 a.m. – 10:10 a.m. A Novel Control System for Solar Tile Micro-Inverters Nicholas Falconar, Dawood Shekari Beyragh,
T06.9 :	11:40 a.m. – 12:00 p.m. Distributed Battery System with Wireless Control and Power Transfer †A Concept Introduction Jaber Abu Qahouq, Yuan Cao		Majid Pahlevani <i>University of Calgary, Canada</i> 10:40 a.m. – 11:00 a.m.
	The University of Alabama, United States n. – 12:00 p.m. verters for PV Systems	T07.6:	GaN Based Transformer-Less Microinverter with Coupled Inductor Interleaved Boost and Half Bridge Voltage Swing Inverter Jinia Roy, Raja Ayyanar Arizona State University, United States
Renew Afridi Kl	able Energy Systems hurram, University of Colorado Boulder	T07.7 :	11:00 a.m. – 11:20 a.m. A Low-Cost Single-Stage PV Inverter Yuxiang Shi, Zhiguo Pan, Rostan Rodrigues, Chun Wei <i>ABB, United States</i>
Hadi Ma	arlek, Utah State University 8:30 a.m. – 8:50 a.m. Zero-Voltage-Switching Single-Phase Inverter with Active Power Decoupling Zhengyu Ye, Yenan Chen, Dehong Xu Zhejiang University, China	T07.8:	11:20 a.m. – 11:40 a.m. Design and Implementation of a 100 kW SiC Filterless PV Inverter with 5 kW/kg Power Density and 99.2% CEC Efficiency Yanjun Shi, Lu Wang, Ren Xie, Hui Li Florida State University, United States
T07.2:	8:50 a.m. – 9:10 a.m. A Transformerless Single-Phase Symmetrical Z-Source HERIC Inverter with Reduced Leakage Currents for PV Systems Kerui Li ³ , Yanfeng Shen ¹ , Yongheng Yang ¹ , Zian Qin ² , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² Delft University of Technology, Netherlands; ³ The University of Hong Kong, China	T07.9:	11:40 a.m. – 12:00 p.m. Comparative Study of a 100kW PV WBG Inverter Using 1200V SiC MOSFET and JFET Cascode Devices Sandro Martin, Thierry Kayiranga, Yanjun Shi, Hui Li <i>Center for Advanced Power Systems – Florida State</i> <i>University, United States</i>

uesaa

T08: SMP Audio and Battery ROOM 217D

Power Electronics Applications

Johan Strydom, Tl

Tuesday

Ed Massey, *Methode Electronics*

T08.1:	8:30 a.m. – 8:50 a.m. Multilevel Tracking Power Supply for Switch- Mode Audio Power Amplifiers Niels Iversen ¹ , Vladan Lazarevic ² , Miroslav Vasic ² , Arnold Knott ¹ , Michael Andersen ¹ , Jose Cobos ² ¹ Technical University of Denmark, Germany; ¹ Technical University of Denmark, Denmark; ² Universidad Politécnica de Madrid, Spain
T08.2:	8:50 a.m. – 9:10 a.m. Improving the Efficiency of Class-D Audio Amplifier Systems Using Envelope Tracking DC-DC Power Supplies Robert Bakker, Maeve Duffy <i>NUI Galway, Ireland</i>
T08.3:	9:10 a.m. – 9:30 a.m. A High-Frequency Non-Isolated ZVS Synchronous Buck-Boost LED Driver with Fully-Integrated Dynamic Dead-Time Controlled Gate Drive Qi Cheng, Hoi Lee University of Texas at Dallas, United States
T08.4 :	9:30 a.m. – 9:50 a.m. PWM Dimming Module Allowing Wide DC-Link Voltage Variation Sui Pung Victor Cheung, Po Wa Jeff Chow, Wing To John Fan, Chung Pui Tung, Shu Hung Henry Chung <i>City University of Hong Kong, Hong Kong</i>
T08.5:	9:50 a.m. – 10:10 a.m. Analysis and Experimentation on a New High Power Factor Off-Line LED Driver Based on Interleaved Integrated Buck Flyback Converter Guirguis Zaki Abdelmessih ² , Jose Marcos Alonso ² , Wen-Tien Tsai ¹ ¹ Industrial Technology Research Institute, Taiwan; ² University of Oviedo, Spain
T08.6:	10:40 a.m. – 11:00 a.m. Evaluation of Paralleled Battery System with SoC Balancing and Battery Impedance Magnitude Measurement Yuan Cao, Jaber Abu Qahouq University of Alabama, United States

.

T08.7:	11:00 a.m. – 11:20 a.m. A Multifunction Series Inductive AC-Link Universal Power Converter with Reduced-Switch Count
	Khalegh Mozaffari, Mahshid Amirabadi Northeastern University, United States
T08.8:	11:20 a.m. — 11:40 a.m. Performance Assessment of the VSC Using Two
	Model Predictive Control Schemes Mohamed Alhasheem ¹ , Ahmed Abdelhakim ³ , Tomislav Dragicevic ¹ , Luca Dalessandro ² , Frede Blaabjerg ¹ ¹ Aalborg university, Denmark; ² Schaffner EMV AG, Switzerland; ³ University of Padova, Italy
T08.9:	11:40 a.m. – 12:00 p.m. State of Health (SOH) Estimation of Multiple Switching Devices Using a Single Intelligent Gate Driver Module Sourov Roy, Faisal Khan <i>University of MIssouri-Kansas City, United States</i>
•••••	
	.m. –5:00 p.m. Hall Open
EXHIBIT H	HALL 3/4
••••• 1:30 p.r	n. – 2:00 p.m.
	or Seminars – Session #1
	iled information see pages 185-188)
	SYNOPSYS Latest Saber Modeling and Simulation Features for Power Electronics ROOM 214A
	LITTELFUSE The Path to Predictable, High Volume, High-Yield Manufacturing of SiC Devices ROOM 214B
	MAGNETICS Practical Considerations with Core Geometry in Inductor Design and New Products ROOM 214C
	POWER INTEGRATIONS Digitally-Controlled Off-Line Flyback that Exceed DOE (6) Efficiency for Wide Range and USB PD Power Supplies

R00M 214D

MOUSER ELECTRONICS Robust Piezo Actuator Solution for Innovative HMI Haptic Feedback ROOM 217A

Tuesday

COILCRAFT Power Inductor Trends BOOM 217B

PANASONIC Designing & Optimizing Power Supplies in Several Gate Driving Method and New Application for Exceeding SI Limit with X-GaN ROOM 217C

NAVITAS SEMICONDUCTOR GaNFast to Higher Efficiency ROOM 217D

2:15 p.m. – 2:45 p.m.

SDS**a**n.

Exhibitor Seminars – Session #2

(for detailed information see pages 188-191)

LTEC CORPORATION **Predict Wide Bandgap Power Device Technology Trends Through Teardowns and Deep Analysis** ROOM 214A

SIMPLIS TECHNOLOGIES, INC. Design Verification using Monte Carlo, Sensitivity and Worst-Case Analyses in SIMPLIS ROOM 214B

TRANSPHORM Reference Designs Kick Start Reliable High-Voltage GaN Application Development ROOM 214C

UNITED CHEMI-CON INC. Advanced DC Link Capacitor for 48V Inverter of MHV ROOM 214D

STMICROELECTRONICS Digital Combo Multi-Mode PFC and Time-Shift LLC Resonant Controller ROOM 217A

RTDS TECHNOLOGIES INC. Real Time Simulation: The Essential Tool for Both Low and High Power Applications ROOM 217B

POWERSIM Integrating PSIM and SPICE for Device Level and System Level Simulation ROOM 217C

ADAPTIVE POWER SYSTEMS Regulatory Power Compliance Testing Made Easy ROOM 217D 3:00 p.m. – 3:30 p.m.

Exhibitor Seminars – Session #3

(for detailed information see pages 191-194)

ABSTRACT POWER ELECTRONICS Primate Power Sources Use SiC Devices to Improve Efficiency & Response Time ROOM 214A

.

OPAL-RT TECHNOLOGIES

How to Use Real-Time Simulation for a Better, Modern and Interactive Teaching Experience for Power Electronic and Electric Motors ROOM 214B

HELIX SEMICONDUCTORS Helix Semiconductors – A New Breed of Energy-Efficient Power Supply Solutions ROOM 214C

FTCAP GMBH

Professional Capacitor Solutions for Severe Conditions: New Approach for Dealing with the Reduction of Parasetic Inductances, Improved Humidity Resistance and Dedicated Automotive Projects

R00M 214D

ALPHA AND OMEGA SEMICONDUCTOR INC. Latest Technology for High-Efficiency Power Conversion ROOM 217A

NICHICON (AMERICA) CORP. What Hybrid Capacitors Can Do For You ROOM 217B

INFINEON TECHNOLOGIES New Gate-Drive IC with Excellent Ground-Shift Robustness ROOM 217C

MERSEN Safety and Reliability for Power Electronics ROOM 217D

3:45 p.m. – 4:15 p.m.

Exhibitor Seminars – Session #4

(for detailed information see pages 195-198)

PIN SHINE INDUSTRIAL CO., LTD. Transformer Applications: Reserch on Overmolding Technics of Composite Materials ROOM 214A

.

RIDLEY ENGINEERING Prototype in 1 Day with SwitchBit ROOM 214B

COGNIPOWER, LLC **Pushing Flyback Converters Above 65 Watts and the PFC Question** ROOM 214C

HOI LUEN ELECTRICAL MANUFACTURER CO., LTD. Mighty Solutions of Fully Insulated Wire (FIW) and the Insulation System ROOM 214D

NH RESEARCH, INC. (NHR) NHR's New AC & DC Regenerative Source/Loads ROOM 217B

SBE, INC.

Luesda

Advanced Developments for High Temperature, High Efficiency and Greater Working Voltages of Capacitors ROOM 217C

INNOCIT LLC Advanced WBG-Based Converters ROOM 217D

Rap Sessions

(for detailed information see page 140)

R01: Biggest Impact on Power Conversion – Devices or Magnetics? HEMISFAIR BALLROOM C1

.

- R02: Gate Drive Isolation Technologies: Optical, Magnetic, or Capacitive Coupling? HEMISFAIR BALLROOM C2
- R03: GaN vs. SIC ss SI for Next Generation Power Devices HEMISFAIR BALLROOM C3

7:00 p.m. -10:00 p.m.

IEEE-PELS-IAS Young Professionals Reception RIO RIO CANTINA, ESTRELLA ROOM (3RD FLOOR)

Wednesday **March 7, 2018**

7:00 a.m. - 8:00 a.m.

Presenter Breakfast HEMISFAIR BALLROOM C3

7:00 a.m. - 3:00 p.m.

Registration WEST REGISTRATION

8:00 a.m. – 10:00 a.m.

ednesda

Spouse and Guest Breakfast RIO VISTA ROOM at MARRIOTT RIVERCENTER

8:30 a.m. - 10:10 a.m.

IS06: Wide Bandgap Device Topics ROOM 206

SESSION CHAIRS:

Peter Di Maso, GaN Systems Laszlo Balogh, ON Semiconductor

8:30 a.m. – 8:55 a.m.

IS06.1: GaN/Si a New Era of Energy Conversion: **Road Map and Demonstrators** Thierry Bouchet CEA LETI. France

8:55 a.m. - 9:20 a.m.

IS06.2: System Level Considerations with **GaN Power Switching** Peter Di Maso, Di Chen GaN Systems, Canada .

9:20 a.m. - 9:45 a.m.

IS06.3: Potential Impacts of WBG and UWBG Devices on **Realizing Radiation-Hard Power Electronics** Jason Neely, Robert Kaplar, Michael King, Elizabeth Auden, Jack Flicker, Jon Salton Sandia National Labs, United States

9:45 a.m. - 10:10 a.m.

IS06.4: State of the Art of GaN on Si HEMT: Technology & **Cost Overview** Elena Barbarini System Plus Consulting, France

APEC. 2+18 CONFERENCE AND EXPOSITION

•	ROOM 207	7
:	Session	Chairs:
	Pietro Sca	
	Texas Ins	truments
•		8:30 a.m. – 8:55 a.m.
•	IS07.1:	Are Antiparallel Diodes Needed for SiC MOSFETs? Xuning Zhang, Gin Sheh, Levi Gant. Sujit Banerjee, <i>Monolith Semiconductor Inc. United</i> <i>States,</i>
		8:55 a.m. – 9:20 a.m.
٠	IS07.2:	Optimum Powering of Signal Chain in 5G AAS m-MIMO Architectures Pietro Scalia, Mark Ng, Ryan Manack <i>Texas Instruments, Germany</i>
		9:20 a.m. – 9:45 a.m.
I	IS07.3:	PFC Choke Ringing and Near Field Radiation Dave R. Pacholok ¹ , Jim Spangler ² <i>CEC Induction LLC United States¹, Spangler Prototype</i> <i>Inc., United States²,</i>
	8·30 a m	. – 10:10 a.m.
• •		hicle Electrification
	ROOM 205	
:	Session	Chair:
I	Dennis St	tephens, Continental Automotive
	000 4	8:30 a.m. – 8:55 a.m.
	IS08.1:	Is EV/HEV a Driver for Innovation? Pierric Gueguen Yole Développement, France
• •		8:55 a.m. – 9:20 a.m.
I	IS08.2:	Efficient, Compact and Scalable DC Fast Charging Concept Timo Gassaue SEMIKRON Elektronik GmbH & Co. KG, Germany
		9:20 a.m. – 9:45 a.m.
I	IS08.3:	A High-Power-Density, SiC-Based, 150 kW Inverter Austin Curbow, Daniel Martin, Brice McPherson, Stephen Minden, Jonathan Hayes, Ty McNutt

.

IS07: Power Solutions for Challenging Real-World

8:30 a.m. – 9:45 a.m.

Applications

65

CONFERENCE AND APEC. 2+18

Wolfspeed, United States

	9:45 a.m. – 10:10 a.m.	
IS08.4:	Delivering Customer Value through Vehicle Electrification Kent Wanner	IS10
	John Deere Electronic Solutions, United States	
8:30 a.m	. – 10:10 a.m.	
IS09: Isc ROOM 21	plation Topics in Power Supplies 2	
Session	CHAIRS:	IS10
Kevin Pa	rmenter, Excelsys Technologies	
Jim Spar	ngler, <i>Independent</i>	
	8:30 a.m. – 8:55 a.m.	
1500 1.		
IS09.1:	Isolation in Power Supply Jason Duan	IS10
	Analog Devices, United States	
	8:55 a.m. – 9:20 a.m.	
IS09.2:	Powering Devices Across the Isolation Barrier Long Nguyen, <i>Silicon Laboratories, United States</i>	• • •
	9:20 a.m. — 9:45 a.m.	8:3
IS09.3:	Increased Power Density Through Capacitive	T09
	Conversion – Revolution Enabled	ROC
	Harold Blomquist, Neaz Farooqi, Ken Harada, Randy Sandusky	DC
	Helix Semiconductors, United States	Jas
	9:45 a.m. – 10:10 a.m.	Ved
IS09.4:	Isolation Techniques without an Isolator	
	Anthony T. Huynh Maxim Integrated, United States	T09
••••		
	. – 10:10 a.m.	
IS10: M ROOM 21	odeling & Simulation 3	
Session	CHAIR:	T09
Wisam N	Noussa, Infineon Technologies	
	8:30 a.m. – 8:55 a.m.	
IS10.1:	High Power Switching Device, SiC MOSFET LTspice Model Teik Siang Ong Wolfspeed, Cree, United States	T0 9

Wednesday

8:55 a.m. – 9:20 a.m.

......................

IS10.2:	Modeling Thermal Impedance of GaN and SiC Power Transistors Under Short-Circuit Conditions
	– How to Estimate Your Transistor Temperature
	During a Short-Circuit Event
	Alberto O. Adan, Louis Burgyan, Daisuke Tanaka,
	Yuji Kakizaki LTEC Corporation, Japan
	9:20 a.m. – 9:45 a.m.
IS10.3:	Application Example for Lifetime Estimation of
	Power Semiconductor Devices Combining Active
	Power Cycling and Thermal Simulation
	Attila Szel
	Mentor Graphics, Hungary
	9:45 a.m. – 10:10 a.m.
IS10.4:	When and Why to use Electromagnetic (EM)
	Simulation when Analyzing Printed Circuit Boards
	John Rice ¹ , Patick DeRoy ² ,
	Texas Instruments, United States ¹ , CST of America, United States ²
	United States
••••	
8:30 a.m	n. — 10:10 a.m.
T09: Resonant Converters	
ROOM 21	
	Converters
Jason Neely, Sandia National Laboratories	
Veda Galigekere, Oak Ridge National Laboratory	
	•••••••••••••••••••••••••••••••••••••••
	8:30 a.m. – 8:50 a.m.
T09.1:	LLC Converters: Beyond Datasheets for MOSFET Power Loss Estimation
	Ettore Scabeni Glitz, Matthieu Amyotte,
	Maria Celeste Garcia Perez, Martin Ordonez
	The University of British Columbia, Canada
	8:50 a.m. – 9:10 a.m.
T09.2 :	A WBG Based Three Phase 12.5 kW 500 kHz
	CLLC Resonant Converter with Integrated PCB Winding Transformer
	Bin Li, Qiang Li, Fred Lee
	Virginia Polytechnic Institute and State University,
	United States
	•••••••••••••••••••••••••••••••••••••••
T00 0	9:10 a.m. – 9:30 a.m.
T09.3:	Design and Analysis of a Dual-Input Single- Resonant Tank LLC Converter for PV Applications
	Seyed Milad Tayebi, Haibing Hu, Osama Abdel-Rahman,
	Issa Batarseh
	University of Central Florida, United States

T09.4 :	A Magnetic Integration Half-Turn Planar Transformer for LLC Resonant DC-DC Converters Enguo Rong, Siqi Li, Rui Zhang, Xiao Du, Qingyun Min, Sizhao Lu Kunming University of Science and Technology, China	T10.5:	Power Quality Assessment in Real Shipboard Microgrid Systems Under Unbalanced and Harmonic AC Bus Voltage Wenzhao Liu ¹ , Tomasz Tarasiuk ² , Mariusz Gorniak ² , Josep.M Guerrero ¹ , Mehdi Savaghebi ¹ , Juan.C Vasquez Chun-Lien Su ³ ¹ Aalborg university, Denmark; ² Gdynia Maritime University, Poland; ³ National Kaohsiung Marine University, Taiwan	
T09.5:	9:50 a.m. – 10:10 a.m. A Novel LLC Resonant Controller with Best-in- Class Transient Performance and Low Standby Power Consumption			
	Yalong Li, Brent McDonald	8:30 a.m. – 10:10 a.m. T11: Control of Inverters and Drives II ROOM 214C		
•••••	Texas Instruments, United States m. — 10:10 a.m.			
T10: Po	ower Electronics for Utility Interface –	Motor	Drives and Inverters	
Power ROOM 2	Quality & Harmonics 14B		Sarlioglu, University of Wisconsin at Madison nar, Oak Ridge National Laboratory	
Power Electronics for Utility Interface Davide Giacomini, <i>Infineon Technologies</i> Alireza Bakhshai, <i>Queen's University</i>		T11.1:	8:30 a.m. – 8:50 a.m. Design and Performance Improvement for Single-Voltage-Loop Controlled Voltage-Source- Converters with a Low LC-Resonant-Frequency	
T10.1:	8:30 a.m. – 8:50 a.m. An Improved Current-Limiting Strategy for Shunt Active Power Filter (SAPF) Using Particle Swarm		Xiaoqiang Li ² , Pengfeng Lin ² , Yi Tang ² , Kai Wang ¹ ¹ China University of Mining and Technology, China; ² Nanyang Technological University, Singapore	
	Optimization (PSO) Wu Cao ² , Mumu Wu ² , Jianfeng Zhao ² , Weiqun Liu ¹ , Yu Lu ¹ ¹ NARI-Relays Electric Co.Ltd, China; ² Southeast University, China	T11.2:	8:50 a.m. – 9:10 a.m. Identification of Load Current Influences on Position Estimation Errors for Sensorless SPMSM Drives Hechao Wang, Kaiyuan Lu, Dong Wang, Frede Blaabjerg	
T10.2:	8:50 a.m. – 9:10 a.m. Harmonic Current Analysis of the Active Front End System in the Presence of Grid Voltage Disturbance Bo Wen ¹ , Paolo Mattavelli ² ¹ The University of Manchester, United Kingdom; ² University of Padova, Italy	T11.3:	Aalborg University, Denmark 9:10 a.m. – 9:30 a.m. Initial Rotor Position Estimation for Wound-Rotor Synchronous Starter/Generators Based on Multi- Stage-Structure Characteristics Tao Meng, Weiguo Liu, Ningfei Jiao, Jichang Peng, Yujie Zhu	
T10.3:	9:10 a.m. – 9:30 a.m. An Adaptive Framework for Mitigating the Current Harmonics Produced by Distributed Energy Resources Using an AC-Stacked Architecture John Troxler, Robert Cox UNC Charlotte, United States	T11.4:	Department of Electrical Engineering, Northwestern Polytechnical University, China 9:30 a.m. – 9:50 a.m. A Torque Ripple Reduction Method for the Aircraft Wound-Rotor Synchronous Starter/Generator in the Starting Mode Shuai Mao, Weiguo Liu, Zan Zhang, Ningfei Jiao,	
T10.4:	9:30 a.m. – 9:50 a.m. Distributed Power Quality Enhancement Using Residential Power Routers Shuang Zhao, Zhongjing Wang, Janviere Umuhoza, Alan Mantooth, Yue Zhao, Chris Farnell University of Arkansas, United States	T11.5:	9:50 a.m. – 10:10 a.m. Active Front End Motor-Drive System Operation Under Power and Phase Loss Abmed Saved Abmed Prior Solidal Russel Korkman	

9:50 a.m. - 10:10 a.m.

T10 5. **Power Quality Assessment in Real Shipboard Systems Under Unbalanced and AC Bus Voltage** iu¹, Tomasz Tarasiuk², Mariusz Gorniak², uerrero¹, Mehdi Savaghebi¹, Juan.C Vasquez¹,

.

Wednesday

m.

erters and Drives II

nverters

	Sarlioglu, University of Wisconsin at Madison nar, Oak Ridge National Laboratory
1.1:	8:30 a.m. – 8:50 a.m. Design and Performance Improvement for Single-Voltage-Loop Controlled Voltage-Source- Converters with a Low LC-Resonant-Frequency Xiaoqiang Li ² , Pengfeng Lin ² , Yi Tang ² , Kai Wang ¹ ¹ China University of Mining and Technology, China; ² Nanyang Technological University, Singapore
1.2:	8:50 a.m. – 9:10 a.m. Identification of Load Current Influences on Position Estimation Errors for Sensorless SPMSM Drives Hechao Wang, Kaiyuan Lu, Dong Wang, Frede Blaabjerg <i>Aalborg University, Denmark</i>
1.3:	9:10 a.m. – 9:30 a.m. Initial Rotor Position Estimation for Wound-Rotor Synchronous Starter/Generators Based on Multi- Stage-Structure Characteristics Tao Meng, Weiguo Liu, Ningfei Jiao, Jichang Peng, Yujie Zhu Department of Electrical Engineering, Northwestern Polytechnical University, China
1.4:	9:30 a.m. – 9:50 a.m. A Torque Ripple Reduction Method for the Aircraft Wound-Rotor Synchronous Starter/Generator in the Starting Mode Shuai Mao, Weiguo Liu, Zan Zhang, Ningfei Jiao, Dongdong Zhao <i>Northwestern Polytechnical University, China</i>
1.5:	9:50 a.m. – 10:10 a.m. Active Front End Motor-Drive System Operation Under Power and Phase Loss Ahmed Sayed-Ahmed, Brian Seibel, Russel Kerkman Rockwell Automation, United States

9:30 a.m. - 9:50 a.m.

APEC. 2+18 CONFERENCE AND EXPOSITION 68

CONFERENCE AND EXPOSITION **APEC** 2+18

69

8:30 a.m. – 10:10 a.m.

T12: Magnetics

R00M 214D

ednesda

Devices and Components Matt Wilkowski, Intel Jason Pries, Oak Ridge National Laboratory 8:30 a.m. - 8:50 a.m. T12.1: **High Inductance Thin-Film Transformer for High** Switching Frequency Dragan Dinulovic², Mahmoud Shousha², Martin Haug², Santosh Kulkarni¹, Paul McCloskey¹, Cian O'Mathuna¹, Joe A'Brien¹ ¹Tyndall National Institute, Ireland; ²Würth Elektronik eiSos GmbH & Co. KG 8:50 a.m. - 9:10 a.m. Winding Design of Series AC Inductor for Dual T12.2: **Active Bridge Converters** Zhan Shen¹, Huai Wang¹, Yanfeng Shen¹, Zian Qin², Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Technische Universiteit Delft. Netherlands 9:10 a.m. - 9:30 a.m. T12.3: An Improved Rogowski Coil Configuration for a High Speed, Compact Current Sensor with High **Immunity to Voltage Transients** Christopher Hewson, Joanne Aberdeen Power Electronic Measurements Ltd. United Kingdom 9:30 a.m. - 9:50 a.m. T12.4: **A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications** Rachel Yang², Alex Hanson², David Perreault², Charles Sullivan¹ ¹Dartmouth, United States; ²Massachusetts Institute of Technology, United States 9:50 a.m. - 10:10 a.m. T12.5: Investigation of Magnetic Field Immunity and Near Magnetic Field Reduction for the Inductors in High Power Density Design

8:30 a.m. – 10:10 a.m.

T13: EMI Detection and Mitigation Methods ROOM 217A

Power Electronics Integration and Manufacturing

	ng <i>, Dell EMC</i> rinos <i>, Payton</i>
T13.1:	8:30 a.m. – 8:50 a.m. Common Mode Filter for EMI Mitigation in Active Phase Converter Anil Adapa, Vinod John Indian Institute of science, India
T13.2:	8:50 a.m. – 9:10 a.m. Investigation of a DC Bus Differential Mode EMI Filter for AC/DC Power Adapters Yiming Li ² , Le Yang ² , Shuo Wang ² , Honggang Sheng ¹ , Srikanth Lakshmikanthan ¹ , Liang Jia ¹ ¹ Google Inc., United States; ² University of Florida, United States
T13.3:	9:10 a.m. – 9:30 a.m. Research of Active EMI Suppression Strategy for High Power Density Power Supply Yilin Sha ³ , Wenjie Chen ³ , Zifeng Zhao ³ , Feng Zhang ³ , Changsheng Pei ² , Zhensheng Chen ¹ ¹ Huawei Technologies Co. Ltd, China; ² Huawei Technologies Co. LtdXi'an Jiaotong University, China; ³ Xi'an Jiaotong University, China
T13.4:	9:30 a.m. – 9:50 a.m. Magnetic Paste As Feedstock for Additive Manufacturing of Power Magnetics Chao Ding ² , Lanbing Liu ² , Yunhui Mei ¹ , Khai D.T. Ngo ² , Guo-Quan Lu ² ¹ <i>Tianjin University, China; ²Virginia Tech, United States</i>
T13.5:	9:50 a.m. – 10:10 a.m. Analysis of Gate Signal Interference in an Integrated SiC MOSFET Module Zazbeng Dong, Xinka Wu, Kuang Sheng

Zezheng Dong, Xinke Wu, Kuang Sheng Zhejiang University, China

Yanwen Lai, Shuo Wang

University of Florida, United States

8:30 a.m. – 10:10 a.m.

T14: Battery Systems

ROOM 217B

Wednesda

Renewable Energy Systems

Robert Balog, Texas A&M University at Oatar Reza Sharifi, TI

8:30 a.m. - 8:50 a.m.

Frequency Support Comparison for Vanadium and T14.1: Lithium-Ion BESSs Using a Converter-Based Grid Emulator Jessica Boles¹, Yiwei Ma², Leon Tolbert², Fred Wang² ¹Massachusetts Institute of Technology, United States; ²University of Tennessee, Knoxville, United States .

8:50 a.m. - 9:10 a.m.

T14.2: **Isolated Single Stage Bidirectional AC-DC Converter with Power Decoupling and Reactive Power Control to Interface Battery with the Single** Phase Grid Damian Sal Y Rosas², David Frey¹, Jean-Luc Schanen¹,

Jean-Paul Ferrieux¹ ¹G2Elab. France: ²UNI. Peru

9:10 a.m. - 9:30 a.m.

T14.3: The State of Charge Balancing Techniques for Electrical Vehicle Charging Stations with **Cascaded H-Bridge Multilevel Converters** Amirhossein Moeini, Shuo Wang University of Florida, United States .

9:30 a.m. - 9:50 a.m.

T14.4: A Grid-Tied Reconfigurable Battery Storage System

Fa Chen, Hongmei Wang, Wei Qiao, Liyan Qu University of Nebraska-Lincoln, United States

.

9:50 a.m. - 10:10 a.m.

Rippleless Resonant Boost Converter for Fuel-Cell T14.5: **Power Conditioning Systems**

Hwasoo Seok², Byeonacheol Han², Soo-Hona Kim¹, Jae-Geun Lee¹, Minsung Kim² ¹LG Innotek, Korea; ²Pohang University of Science and Technology, Korea

8:30 a.m. – 10:10 a.m.

T15: Charging and Energy Storage Topics R00M 217C

Transportation Power Electronics

Omer Onar, Oak Ridge National Laboratory Yingying Kuai, Caterpillar Inc.

T15.1:	8:30 a.m. – 8:50 a.m. Extreme Fast Charging Station Architecture for Electric Vehicles with Partial Power Processing Vishnu Mahadeva Iyer, Srinivas Gulur, Ghanshyamsinh Gohil, Subhashish Bhattacharya North Carolina State University, United States
T15.2:	8:50 a.m. – 9:10 a.m. Kilowatt-Scale Large Air-Gap Multi-Modular Capacitive Wireless Power Transfer System for Electric Vehicle Charging Brandon Regensburger, Sreyam Sinha, Ashish Kumar, Jason Vance, Zoya Popović, Khurram Afridi <i>University of Colorado Boulder, United States</i>
T15.3:	9:10 a.m. – 9:30 a.m. Hybrid Commutation Method with Current Direction Estimation for Three-Phase-to-Single- Phase Matrix Converter Shunsuke Takuma, Jun-Ichi Itoh Nagaoka University of Technology, Japan
T15.4:	9:30 a.m. – 9:50 a.m. A Direct Multi-Cells-to-Multi-Cells Equalizer Based on LC Matrix Converter for Series- Connected Battery Strings Naxin Cui, Yunlong Shang, Qi Zhang, Chenghui Zhang <i>Shandong University, China</i>
T15.5:	9:50 a.m. – 10:10 a.m. A Novel Hybrid Energy Storage System Using the Multi-Source Inverter

Lea Dorn-Gomba, Ephrem Chemali, Ali Emadi Electrical and Computer Engineering Department, McMaster University, Canada

APEC. 2+18 CONFERENCE AND EXPOSITION

72

Wednesday

8:30 a.m. – 10:10 a.m.

T16: New Technology

R00M 217D

Power Electronics Applications

Indumini Ranmuthu, T/ Jeff Nilles, T/

0.20 am 0.50 am

T16.1:	8:30 a.m. – 8:30 a.m. Hybrid Active Power Filter with GaN Power Stage for 5kW Single Phase Inverter Ruben Otero-De-Leon ¹ , Liming Liu ¹ , Sandeep Bala ¹ , Giovanni Manchia ² ¹ ABB Corporate Research Center, United States; ² ABB S.p.A., Italy
T16.2:	8:50 a.m. — 9:10 a.m. High Frequency Electroporation for Biomedical Applications Using GaN Gate Injection Transistors Hector Sarnago, Oscar Lucia, Jose M. BurdÃo <i>Universidad de Zaragoza, Spain</i>
T16.3:	9:10 a.m. – 9:30 a.m. A Miniaturized Cost Effective Shared Inductor Based Energy Management System for Ultra-Low- Voltage Electromagnetic Energy Harvesters in Battery Powered Applications Mahmoud Shousha, Dragan Dinulovic, Michael Brooks, Martin Haug <i>Magi3C R&D, Würth Elektronik eiSos, Germany</i>
T16.4 :	9:30 a.m. – 9:50 a.m. Low Voltage Sub-Nanosecond Pulsed Current Driver IC for High-Resolution LIDAR Applications

Driver IC for High-Resolution LIDAR Applications Eli Abramov, Michael Evzelman, Or Kirshenboim, Tom Urkin, Mor Peretz Ben-Gurion University of the Negev, Israel

10:00 a.m. – 2:00 p.m.

Exhibit Hall Open

EXHIBIT HALL 3/4

10:30 a.m. – 11:00 a.m.

Exhibitor Seminars – Session #1

(for detailed information see pages 198-201)

RICHARDSON RFPD Biasing Your Gates-How to Simplify Your Power Switching Applications with RECOM DC/DC Converters ROOM 214A TEKTRONIX, INC. Half Bridge and Gate Driver Measurements ROOM 214B

NAMICS TECHNOLOGIES, INC. NAMICS New Technology and Products ROOM 214C

TELEDYNE LECROY

Debug and Validate Control, Drive and Motor Performance with a Motor Drive Analyzer ROOM 214D

TT ELECTRONICS

Resistor Selection for Proper Circuit Operation and Reliability ROOM 217A

WURTH ELECTRONICS How to Use This Stuff Called Ferrite ROOM 217B

POWEELAB LTD. Optimize Power Supply Design in Minutes for Free-PowerEsim BOOM 217C

HBM TEST AND MEASUREMENT Rapid Efficiency Motor Mapping and Analysis ROOM 217D

11:15 a.m. – 11:45 a.m.

Exhibitor Seminars – Session #2

(for detailed information see pages 202-204)

PACIFIC SOWA CORP C/O EPSON ATMIX CORP High U Super Low Core Loss Nanocystalline Powder "KUAMET NC1" ROOM 214A

PSEMI (Formerly PEREGRINE SEMICONDUCTOR) Vertical Integration to Support Next-Generation Power Conversion Solutions ROOM 214B

SCHUNK CARBON TECHNOLOGY GMBH Graphite-Based Solutions for (Power) Electronics Cooling ROOM 214C

ZES ZIMMER INC. Advancements in PWM Efficiency Power Testing ROOM 214D

PLEXIM Rapid Control Prototyping for Power Electronic Systems Using the PLECS Tool-Chain ROOM 217C

74 APEC. 2+18 CONFERENCE AND EXPOSITION

4

<u>/ednesda</u>

Wednesday

FATON Applications and Benefits of Supercapacitor Technology R00M 217A

SIDELINESOFT LLC **NL5-Circuit Simulator with Ideal Components ROOM 217B**

EFFICIENT POWER CONVERSION CORPORATION **GaN Transistors for Efficient Power Conversion** R00M 217D

12:00 p.m. – 12:30 p.m.

ednesda

Exhibitor Seminars – Session #3

(for detailed information see pages 205-208)

IWATSU ELECTRIC COMPANY LIMITED **Comparison between Digitizer, Power Analyzer** and CROSS POWER Method on Magnetic Material Analysis R00M 214A

STAR TECHNOLOGIES, INC. Taurus-PDAT-Power Device Analytical Tester R00M 214B

WEST COAST MAGNETICS What does the future hold for Transformers and **Inductors in Medium and High-Power Applications** R00M 214C

DANFOSS SILICON POWER GMBH Automotive Traction Module Platform R00M 214D

ITG ELECTRONICS INC. **COTS Filters for MIL-STD-461 Applications** R00M 217A

UNITED SILICON CARBIDE INC. **USCi Gen 3 Cascode and Diode Products ROOM 217B**

SABIC **ULTEM UTF120 High Temperature Dielectric Film** for Capacitor Applications R00M 217C

MITSUBISHI ELECTRIC US. INC. Latest Power Semiconductor Packaging and Chip Technology R00M 217D

2:00 p.m. – 5:25 p.m.

IS11: Enabling High-Volume Wide Bandgap Semiconductor Manufacturing and Applications ROOM 206

SESSION CHAIR:

lim	LeMun	von	PowerA	1mer	ira
UIIII	LOIVIUII	yon, i		linci	160

2:00 p.m. – 2:25 p.m.

IS11.1:	Advantages of Wide Bandgap Technology in Industrial Applications
	Luis Arnedo United Technologies Research Center, United States
	2:25 p.m. – 2:50 p.m.

Challenges in Vehicle System Integration of Wide IS11.2: Bandgap Semiconductors Marko Jaksik General Motors, United States

2:50 p.m. – 3:15 p.m.

IS11.3:	High Frequency GaN Power Converter Applications
	Tom Byrd Lockheed-Martin, United States
	•••••••••••••••••••••••••••••••••••••••

3:15 p.m. – 3:40 p.m.

IS11.4: High Performance of SiC Power Devices for Vehicle Electrification Avi Kashyap Microsemi, United States

4:10 p.m. – 4:35 p.m.

IS11.5: **Requirements for Cost-Effective Manufacturing of** SIC MOSFETS Suna Joon Kim

Global Power Technologies, United States

4:35 p.m. – 5:00 p.m.

Reliability of SiC Power Devices in Industrial IS11.6: Applications Stephen Bayne Texas Tech, United States

5:00 p.m. – 5:25 p.m.

Accelerating the Adoption of SiC and GaN IS11.7: Technology James LeMunyon PowerAmerica. United States

. –
(d b 🔚
the second s
_
4
_
· .

.

2:00 p.m. – 5:25 p.m.

IS12: Vehicle Batteries - It's More Than Just Stacking Cells Together and an EV1 Retrospective ROOM 207

SESSION CHAIRS: Ralph Taylor, *Delphi* Fred Weber, *FTW*

<u>Wednesda</u>

2:00 p.m. – 2:25 p.m.

IS12.1: EV1 Retrospective and the Electric Vehicle Revolution Robert Dawsey Flex Power Control, Inc., United States

2:25 p.m. – 2:50 p.m.

IS12.2: Battery Power for All-Electric Road Vehicles John B. Goodenough, M. Helena Braga University of Texas at Austin, United States

2:50 p.m. – 3:15 p.m.

IS12.3: Lithium Ion Batteries: Current Status and Future Needs for Electric Vehicles and Fast Charging Claus Daniel Oak Ridge National Laboratory United States

3:15 p.m. – 3:40 p.m.

IS12.4: An Overview of the Part Acceptance Process for Regulated Lithium Ion Batteries in Transportation Eric Schneider Independent, United States

4:10 p.m. – 4:35 p.m.

IS12.5: Thermal Management of Lithium-Ion Batteries Greg Albright *AllCell Technologies, United States*

4:35 p.m. – 5:00 p.m.

IS12.6: Supercapacitors for Transportation Applications Nihal Kularatna University of Waikato ,New Zealand

5:00 p.m. – 5:25 p.m.

IS12.7: An Overview and Comparison of on Board Chargers Topologies, Semiconductors Choices and Synchronous Rectification Advantages in Automotive Applications Davide Giacomini Infineon, Italy 2:00 p.m. – 5:00 p.m.

IS13: Alternative Energy ROOM 205

SESSION CHAIR:

Jason Katcha, Present Power Systems

2:00 p.m. – 2:25 p.m.

IS13.1:	Worth of a Watt – Its Capital Equivalent
	Mark Jacobs
	Boisbrun Hofman, United States
	••••••••••••••••••••••••

.....

2:25 p.m. – 2:50 p.m.

IS13.2: Lifetime Evaluation of Power Module with SiC MOSFET designed for Solar Applications Andrea Bianchi ABB, Italy

2:50 p.m. – 3:15 p.m.

IS13.3: Microgrid PV with DC Coupled Battery Aleksandar Vukojevic Duke Energy, United States

3:15 p.m. – 3:40 p.m.

IS13.4: Deterministic Communications in Distributed Data Acquisition and Control Systems for Smart Energy Applications Igor Alvarado National Instruments, United States

4:10 p.m. – 4:35 p.m.

IS13.5: Energy Network for Residential Storage Applications Yabiao Gao sonnen Inc., United States

4:35 p.m. - 5:00 p.m.

IS13.6: SiC Based Flyback Converter for Solar PV Jason Katcha Present Power Systems, United States,

	2:00 p.m. – 5:25 p.m. IS14: Innovative Component, Reliability and Manufacturing 3D Power Packaging Solutions		2:00 p.m. — 5:25 p.m. IS15: Motor Drives, Inverters and Modules ROOM 213		
	ROOM 2	12	SESSION		
	Session Chairs: Brian Narveson, <i>Narveson Innovative Consulting</i>		Session Chair: David Levett, <i>Infineon</i>		
	Ernie Pa	rker, <i>Crane Aerospace</i>		2:00 p.m. – 2:25 p.m.	
	IS14.1:	2:00 p.m. – 2:25 p.m. Conductive Fusion Technology: Advanced Die Attach Materials for High Power Applications Nicholas Krasco ¹ , Maciej Patelka ¹ , Steve Anagnostopoulos ¹ .	IS15.1:	Optimized Thermal Layout for Nano Half-Bridge Intelligent Power Modules Pengwei Sun, Pei Jin, Vazgen Avakian, Danish Khatri, Katsumi Okawa <i>Infineon Technologies Americas Corp., United States</i>	
Wodnoedau		Sho Ikeda ¹ , Frank Letizia ¹ , Toshiyuki Sato ¹ ,		2:25 p.m. – 2:50 p.m.	
	IS14.2:	Satomi Kawamoto ¹ , Miguel Goni ² , Elbara Ziade ² , Aaron J. Schmidt ² <i>NAMICS, United States¹, Boston University, United States²</i> 2:25 p.m. – 2:50 p.m. Joining Materials Reliability for Evolving Power Applications Andy C. Mackie, Hongwen Zhang, Sihai Chen, Seth Homer, Karthik Vijayamadhavan	IS15.2:	A Novel Hybrid Compensation Control Method for Electrolytic Capacitorless Inverter Fed IPMSM Drive Ling Luo ¹ , Zheng Wang ² ¹ LG Electronics China R&D Center, China, ² Southeast University	
				2:50 p.m. – 3:15 p.m.	
	IS14.3:	Indium Corporation, United States 2:50 p.m. – 3:15 p.m. Transient Liquid Phase Sintering Pastes as Solder Alternatives in System in Package Applications Catherine Shearer <i>Ormet Circuits Inc., United States</i> 3:15 p.m. – 3:40 p.m. Embedded Passives – Recent Advances and Opportunities: From PSMA Phase III Report P.M. Raj, Himani Sharma, Teng Sun, Robert Grant Spurney, Rao Tummala <i>Georgia Institute of Technology, United States</i>	IS15.3:	Performance Improvement in SiC Based Inverters by Dead-Time Optimization Martin Röblitz, Christopher Schmidt, Kevork Haddad. SEMIKRON Elektronik GmbH & Co. KG, Germany	
				3:15 p.m. – 3:40 p.m.	
			IS15.4: IS15.5:	Motor Drives and SiC MOSFETs, a Good Match? Peter Friedrichs, David Levett Infineon, Germany	
	IS14.4:				
				4:10 p.m. – 4:35 p.m.	
				Silicon Carbide MOSFETs – Handle with Care Nitesh Satheesh, <i>AgileSwitch, LLC United States</i>	
				4:35 p.m. – 5:00 p.m.	
	IS14.5:	4:10 p.m. – 4:35 p.m. .5: New Wave SiP Solution for Power Vincent Lin <i>ASE Group, Taiwan</i>		Dual High Voltage IGBT Modules with Metal Casting Direct Bonding (MCB) Baseplate Michael Rogers ¹ , Junya Sakai ¹ , Eric Motto ² ¹ Mitsubishi Electric Corporation, United States, ² Pow	
		4:35 p.m. – 5:00 p.m.		5:00 p.m. – 5:25 p.m.	
	IS14.6:	: Power Modules – A New Packaging Approach David Cooper Sumida Inc., Canada	IS15.7:		
		5:00 p.m – 5:25 p.m.		E&M Power, United States	
	IS14.7:	Chip Embedding in Laminate based on Cu Leadframe for Thin Die Packaging Klaus Pressel Infineon Technologies AG, Germany			

APEC. 2+18 CONFERENCE AND EXPOSITION

80

2:00 p.m. – 5:30 p.m.

T17: Single-Phase AC-DC Converters **ROOM 214A**

.

ednesda

AC-DC Converters

Gerry Moschopoulos, Western University Leila Parsa, Rensselaer Polytechnic Institute

2.00 nm = 2.20 nm

	2.00 p.m. – 2.20 p.m.
T17.1:	A Novel AC-DC Interleaved ZCS-PWM
	Boost Converter
	Ramtin Rasoulinezhad, Adel Abosnina,
	Gerry Moschopoulos
	Western University, Canada
	•••••••••••••••••••••••••••••••••••••••
	2:20 p.m. – 2:40 p.m.
T17.2:	A Single-Stage Bidirectional Dual-Active-Bridge AC-DC Converter Based on Enhancement Mode GaN Power Transistor
	Tianxiang Chen, Ruiyang Yu, Qingyun Huang, Alex Q. Huang
	University of Texas at Austin, United States
	•••••••••••••••••••••••••••••••••••••••
	2.40 m m 2.00 m m

2:40 p.m. – 3:00 p.m.

A 99.1% Efficient, 490 W/InÂ³ Power Density Power T17.3: Factor Correction Front End Based on a 7-Level Flying Capacitor Multilevel Converter Shibin Qin, Zitao Liao, Zichao Ye, Derek Chou, Nathan Brooks, Robert Pilawa-Podgurski University of Illinois, Urbana Champaign, United States

3:00 p.m. - 3:20 p.m.

T17.4: **Multitrack Power Factor Correction Architecture** Miniie Chen², Sombuddha Chakraborty³, David Perreault¹ ¹*Massachusetts Institute of Technology, United States;* ²Princeton University, United States; ³Texas Instruments, United States

3:20 p.m. - 3:40 p.m.

Improving SRC with Capacitor Bypassing Method T17.5: for Universal AC-DC Adapter

Yang Chen², Hongliang Wang², Yan-Fei Liu², P. C. Sen², Xiaodong Liu¹ ¹Anhui University of Technology, China: ²Queen's University, Canada ,,

4:10 p.m. - 4:30 p.m.

T17.6: Minimum Inrush Start-Up Control of a Single-Phase Interleaved Totem-Pole PFC Rectifier Ayan Mallik, Jiangheng Lu, Shenli Zou, Peiwen He, Alireza Khaligh University of Maryland, College Park, United States

	On/Off-Time Controlled Regulators Giovanni Gritti STMicroelectronics, United States
T17.8:	4:50 p.m. – 5:10 p.m. Quasi-Resonant Flyback Converter with New Valley Voltage Detection Mechanism Wei-Chia Wu ² , Tsorng-Juu Liang ² , Kai-Hui Chen ¹ , Cheng-Yuan Li ¹ ¹ National Cheng Kung University, Taiwan; ² National Cheng Kung University, Taiwan
	••••••••••••••••••••••••

Novel Adaptive Pulse Width Modulator Provides

Quasi-Fixed Switching Frequency in Constant

5:10 p.m. - 5:30 p.m.

4:30 p.m. - 4:50 p.m.

T17.7:

T17.9: Improving Light Load Power Factor for GaN Based **Totem Pole Bridgeless PFC Using Digital Phase** Locked Loop Based Vector Cancellation & Tracking Error Compensation Manish Bhardwaj, Sheng-Yang Yu, Zhong Ye, Shamim Choudhury Texas Instruments, United States

2:00 p.m. - 5:30 p.m.

T18: Soft Switching Converters

ROOM 214B

DC-DC Converters

Luke Jenkins, IBM Aleksandar Prodic, University of Toronto 2:00 p.m. - 2:20 p.m. **Design Considerations of Highly-Efficient Active** T18.1: **Clamp Flyback Converter Using GaN Power ICs** Lingxiao Xue, Jason Zhang Navitas Semiconductors, United States 2:20 p.m. - 2:40 p.m. **Design Consideration of Active Clamp** T18.2: **Flyback Converter with Highly Nonlinear Junction Capacitance** Pei-Hsin Liu

Texas Instruments, United States

2:40p.m. – 3:00 p.m.

A High-Efficiency High-Power-Density 1MHz LLC T18.3: **Converter with GaN Devices and** Integrated Transformer Runruo Chen, Sheng-Yang Yu Texas Instruments. United States

APEC 2+18 CONFERENCE AND EXPOSITION 82

3:00 p.m. – 3:20 p.m. High-Frequency LC³L Resonant DC-DC Converter for Automotive LED Driver Applications Satyaki Mukherjee ¹ , Alihossein Sepahvand ² , Dragan Maksimović ³ ¹ Indian Institute of Technology, Kharagpur, India; ² Texas Instruments, United States; ³ University of Colorado, Boulder, United States
3:20 p.m. – 3:40 p.m. A Topology Morphing Multi-Element Resonant Converter with Wide Voltage Gain Range Liang Yang, Yifeng Wang, Chengshan Wang, Wei Li, Mengying Chen <i>Tianjin University, China</i>
4:10 p.m. – 4:30 p.m. Study on Reducing Switching Current in Dual Bridge Series Resonant DC/DC Converter Bo Yang, Qiongxuan Ge, Lu Zhao, Zhida Zhou, Dongdong Cui, Yaohua Li <i>Institute of Electrical Engineering, Chinese Academy</i> <i>of Sciences, China</i>
4:30 p.m. – 4:50 p.m. The Improved Dual Active Bridge Converter with a Modified Phase Shift and Variable Frequency Control Feilong Liu, Xiaofeng Sun, Jia Feng, Junjuan Wu, Xin Li <i>College of Electrical Engineering of Yanshan University,</i> <i>China</i>
4:50 p.m. – 5:10 p.m. Merged PWM-Resonant Converter for Direct Panel to Grid-Level Conversion in Localized PV Energy Harvesting Or Kirshenboim, Guy Sovik, Dor Yairi, Mor Mordechai Peretz <i>Ben Gurion University, Israel</i>
5:10 p.m. – 5:30 p.m. An Improved Active Zero Voltage Switching Assisting Circuit with Lower dv/dt for DC-DC Series Resonant Converter with Constant Input Current Tarak Saha, Hongjie Wang, Baljit Riar, Regan Zane Utah State University, United States

Wednesda

2:00 p.m. – 5:10 p.m.

T19: Control of Inverters and Drives I ROOM 214C

Motor Drives and Inverters

Thomas	Gietzold, United Technologies Aerospace Systems	
Ali Bazzi,	UCONN	
	•••••••••••••••••••••••••••••••••••••••	
T19.1:	2:00 p.m. – 2:20 p.m. Sensorless Control Using a Full-Order Observer Based on a Novel Flux Model of High Power	
	Interior Permanent Magnet Synchronous Motor Young Seol Lim ¹ , June-Seok Lee ² , Joon Hyoung Ryu ² , Kyo-Beum Lee ¹	
	¹ Niou University Korea ^{, 2} KRRL Korea	

Ajou University, Korea; ²KHHI, Korea

2:20 p.m. – 2:40 p.m.

T19.2: Automatic Advance Angle Control Algorithm Using Anti-Windup Feedback Voltage of Pi Current Controller for Wide Range Speed Operation of BLDCM Min-Hyo Lee², Ho-Jin Kim¹, Hyeong-Jin Kim³, Jang-Mok Kim³

¹Busan Techno-Park, Korea; ²LG Electronics, Korea; ³Pusan National University, Korea

2:40 p.m. – 3:00 p.m.

T19.3: Line Voltage Difference Integral Method of Commutation Error Adjustment for Sensorless Brushless DC Motor Xuliang Yao, Hao Lin, Jicheng Zhao

Harbin Engineering University College of automation, China

3:00 p.m. – 3:20 p.m.

T19.4: Two-Segment Three-Phase PMSM Drive with Carrier Phase-Shift PWM Xun Han, Dong Jiang, Tianjie Zou, Ronghai Qu, Kai Yang

Xun Han, Dong Jiang, Tianjie Zou, Ronghai Qu, Kai Yang Huazhong University of Science&Technology, China

3:20 p.m. – 3:40 p.m.

T19.5: A Full-Order Sliding Mode Flux Observer with Stator and Rotor Resistance Adaptation for Induction Motor

Yuanbo Guo, Ze Li, Bijun Dai, Xiaohua Zhang Dalian University of Technology, China

4:10 p.m. – 4:30 p.m.

T19.6: Stability Analysis and Improvement of V/Hz Controlled Adjustable Speed Drives Equipped with Small DC-Link Thin Film Capacitors Zhentian Qian², Wenxi Yao², Kevin Lee¹ ¹Eaton Corporation, United States; ²Zhejiang University, China

			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T19.7:	4:30 p.m. – 4:50 p.m. Suppressing Dead-Time Effect in Current- Controlled Three-Phase PWM Inverters by Using Virtual Inductor Adinda Ihsani Putri, Arwindra Rizqiawan, Tridesmana Rachmilda, Yanuarsyah Haroen, Pekik Argo Dahono <i>Institut Teknologi Bandung, Indonesia</i>	T20.5:	3:20 p.m. – 3:40 p.m. Wideband Contactless Current Sensing Using Hybrid Magnetoresistor-Rogowski Sensor in Hi Frequency Power Electronic Converters Shahriar Jalal Nibir, Sven Hauer, Mehrdad Biglarbegi Babak Parkhideh University of North Carolina at Charlotte, United Stat
T19.8:	4:50 p.m. – 5:10 p.m. Hybrid Space Vector Pulse Width Modulation Synthesis to Minimize the Common-Mode Voltage Ameer Janabi, Bingsen Wang Michigan State University, United States	T20.6:	4:10 p.m. – 4:30 p.m. The Mitigating Effects of the Threshold Voltage Shifting on the False Turn-on of GaN E-HEMTs Guangzhao Xu, Xu Yang, Ruiliang Xie, Feng Zhang, Naizeng Wang, Mofan Tian, Haiyang Jia, Laili Wang <i>Xi'an Jiaotong University, China</i>
2:00 p. T20: Ga R00M 2 Device	m. – 5:30 p.m. aN Device Opportunities and Challenges 214D es and Components Donald, <i>Infineon Technologies</i>	T20.7:	4:30 p.m. – 4:50 p.m. An Analytical Turn-on Power Loss Model for 65 GaN eHEMTs Yanfeng Shen ¹ , Huai Wang ¹ , Zhan Shen ¹ , Frede Blaabjerg ¹ , Zian Qin ² ¹ Aalborg University, Denmark; ² Delft University of Technology, Netherlands
	ing, IBM		4:50 p.m. – 5:10 p.m.
T20.1:	2:00 p.m. – 2:20 p.m. Opportunities and Design Considerations of GaN HEMTs in ZVS Applications Juncheng Lucas Lu, Ruoyu Hou, Di Chen <i>GaN Systems Inc., Canada</i>	T20.8:	Parasitic Capacitance Eqoss Loss Mechanism, Calculation, and Measurement in Hard-Switchi for GaN HEMTs Ruoyu Hou, Juncheng Lu, Di Chen GaN Systems Inc., Canada
T20.2 :	2:20 p.m. – 2:40 p.m. Design Considerations for GaN Transistor Based Synchronous Rectification David Reusch, John Glaser <i>Efficient Power Conversion (EPC), United States</i>	T20.9:	5:10 p.m. – 5:30 p.m. High Precision Gate Signal Timing Control Base Active Voltage Balancing Scheme for Series- Connected Fast Switching Field-Effect Transiste Zheyu Zhang, Handong Gui, Jiahao Niu, Ruirui Chen, Fred Wang, Leon Tolbert, Daniel Costinett, Benjamin Blalock
T20.3:	2:40 p.m. – 3:00 p.m. High Power 3-Phase to 3-Phase Matrix Converter Using Dual-Gate GaN Bidirectional Switches Hidekazu Umeda, Yasuhiro Yamada, Kenichi Asanuma, Fumito Kusama, Yusuke Kinoshita, Hiroaki Ueno, Hidetoshi Ishida, Tsuguyasu Hatsuda, Tetsuzo Ueda <i>Panasonic Corporation, Japan</i>		the University of Tennessee, United States
T20.4:	3:00 p.m. – 3:20 p.m. Dynamic on-State Resistance Evaluation of GaN Devices Under Hard and Soft Switching Conditions Rui Li, Xinke Wu, Gang Xie, Kuang Sheng <i>Zhejiang University, China</i>	(

Wednesday

20.5:	Wideband Contactless Current Sensing Using Hybrid Magnetoresistor-Rogowski Sensor in High Frequency Power Electronic Converters Shahriar Jalal Nibir, Sven Hauer, Mehrdad Biglarbegian, Babak Parkhideh University of North Carolina at Charlotte, United States
20.6:	4:10 p.m. – 4:30 p.m. The Mitigating Effects of the Threshold Voltage Shifting on the False Turn-on of GaN E-HEMTs Guangzhao Xu, Xu Yang, Ruiliang Xie, Feng Zhang, Naizeng Wang, Mofan Tian, Haiyang Jia, Laili Wang <i>Xi'an Jiaotong University, China</i>
20.7:	4:30 p.m. – 4:50 p.m. An Analytical Turn-on Power Loss Model for 650-V GaN eHEMTs Yanfeng Shen ¹ , Huai Wang ¹ , Zhan Shen ¹ , Frede Blaabjerg ¹ , Zian Qin ² ¹ Aalborg University, Denmark; ² Delft University of Technology, Netherlands
20.8:	4:50 p.m. – 5:10 p.m. Parasitic Capacitance Eqoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs Ruoyu Hou, Juncheng Lu, Di Chen <i>GaN Systems Inc., Canada</i>
20.9:	5:10 p.m. – 5:30 p.m. High Precision Gate Signal Timing Control Based Active Voltage Balancing Scheme for Series- Connected Fast Switching Field-Effect Transistors

Wednesday

APEC. 2+18 CONFERENCE AND EXPOSITION 86

2:00 p	o.m. —	5:30	p.m
--------	--------	------	-----

T21: Power Converter Modeling & Control R00M 217A

ednesda

Modeling and Simulation

Sara Ahmed, *University of Texas at San Antonio* Liming Liu, *ABB Inc*.

2:00 p.m. – 2:20 p.m.

T21.1:	Impedance-Based Analysis of DC Link Control in Voltage Source Rectifiers Dapeng Lu, Xiongfei Wang, Frede Blaabjerg Aalborg University, Denmark
T21.2 :	2:20 p.m. – 2:40 p.m. Modeling Resonant Converters in a Rotating, Polar Coordinate

Yi-Hsun Hsieh, Fred C. Lee Virginia Polytechnic Institute and State University, United States

2:40 p.m. – 3:00 p.m.

[21.3 :	First Order Design by Optimization Method:
	Application to an Interleaved Buck Converter
	and Validation –

Mylène Delhommais², Jean-Luc Schanen², Frédéric Wirtz², Cécile Rigaud¹, Sylvain Chardon¹ ¹TRONICO-ALCEN, France; ²Institut Polytechnique de Grenoble, France

3:00 p.m. – 3:20 p.m.

T21.4: Approaches for Continuous-Time Dynamic Modeling of the Asymmetric Dual-Active Half-Bridge Converter Shiladri Chakraborty, Manas Palmal, Souvik Chattopadhyay Indian Institute of Technology Kharagpur, India

malan metrate er reennelegy kilaragpal, mala

3:20 p.m. – 3:40 p.m.

T21.5: Analysis and Evaluation of Input Power Splitting Method Between Multiple Transmitters for Maximum Wireless Power Transfer Yuan Cao, Jaber Abu Qahouq The University of Alabama, United States

4:10 p.m. – 4:30 p.m.

T21.6: Virtual Impedance Based Stability Analysis for Direct Digital Controlled Single-Phase Grid-Connected Inverter with LCL Filter Having Wide Inductance Variation Tsai-Fu Wu, Mitradatta Misra, Ying-Yi Jhang, Chun-Yi Lin National Tsing Hua University. Taiwan 4:30 p.m. – 4:50 p.m.

T21.7:	Multi-Objective Optimization Based Real-Time Control for PEV Hybrid Energy Management		
	Systems Xiaoying Lu, Yaojiang Chen, Haoyu Wang <i>ShanghaiTech University, China</i>		
T21 0.	4:50 p.m. – 5:10 p.m.		

121.8: Utilizing Method of Moments Electromagnetic Technology to Model High Speed Power Converter Parasitics Chris Mueth

Keysight Technologies, United States

5:10 p.m. - 5:30 p.m.

T21.9: EMI Noise Source Modeling Based on Network Theory for Power Converters with Mixed-Mode Characterization Huan Zhang, Shuo Wang University of Florida, United States

2:00 p.m. – 5:30 p.m.

T22: Control Strategies for Inverters & Motor Drives R00M 217B

Control

	ou Qahouq, The University of Alabama , Texas Instrument
Г22.1 :	2:00 p.m. – 2:20 p.m. Common-Mode Voltage Elimination of Three-Level T-Type Inverters with a Finite Control Set Model Predictive Control Method Xiaodong Wang, Jiaoxiao Zou, Jiancheng Zhao, Zhenhua Dong, Min Wei, Chuan Xie, Kai Li <i>University of Electronic Science and Technology of</i> <i>China, School of Automation Engineering, China</i>
Г22.2 :	2:20 p.m. – 2:40 p.m. Using One FPGA to Control Two High-Switching- Frequency PMSM Drive Systems Through a Novel Time-Division Multiplexing Method Wei Qian ² , Fanning Jin ² , Kevin Bai ² , Dingguo Lu ¹ , Bing Cheng ¹

¹Mercedes-Benz Research, United States; ²University of Michigan-Dearborn, United States

88 APEC 2 18 CONFERENCE AND EXPOSITION

T22.3:	2:40 p.m. – 3:00 p.m. Improved Virtual Synchronous Generator Control Strategy for Seamless Switching Zishun Peng ¹ , Jun Wang ¹ , Yuxing Dai ¹ , Yeting Wen ¹ , Z. John Shen ¹ , Zongjian Li ¹ , Daqiang Bi ² ¹ Hunan University, China; ² Tsinghua University, China	2 T R
T22.4:	3:00 p.m. – 3:20 p.m. Decentralized Control of Series Stacked Bidirectional DC-AC Modules Prasanta Achanta ² , Milan Ilic ¹ , Dragan Maksimovic ² ¹ Empower Micro Systems, United States; ² University of Colorado Boulder, United States	A N T
T22.5:	3:20 p.m. – 3:40 p.m. A Novel Adaptive Control for Three-Phase Inverter Xiangjun Quan ² , Alex Q. Huang ² , Xiaobo Dou ¹ , Zaijun Wu ¹ , Minqiang Hu ¹ ¹ Southeast University, China; ² The University of Texas at Austin, United States	т
T22.6 :	4:10 p.m. – 4:30 p.m. Reference Current Regulation for Inverter with Virtual Resistor Damping Control Cheng Nie, Wanjun Lei, Yue Wang, Tian Li, Yan Zhang <i>Xi´an Jiaotong University, China</i>	т
T22.7 :	4:30 p.m. – 4:50 p.m. Expanding the CCM Boundary of a Current-Fed Switched Inverter Anil Gambhir, Santanu Mishra <i>IIT Kanpur, India</i>	т
T22.8:	4:50 p.m. – 5:10 p.m. Stationary Reference Frame Based Current Control Structure with Improved Disturbance Rejection for Grid Connected Converters Srinivas Gulur, Vishnu Mahadeva Iyer, Subhashish Bhattacharya North Carolina State University, United States	т
T22.9:	5:10 p.m. – 5:30 p.m. Sliding Mode Control of the Modular Multilevel Converter Qichen Yang, Maryam Saeedifard <i>Georgia Institute of Technology, United States</i>	т
		т

Wednesday

2:00 p.m. – 5:30 p.m.

T23: Wireless Power Transfer Applications R00M 217C

Wireless Power Transfer

	hurram, University of Colorado Boulder I de Rooij, Efficient Power Conversion Corporation
Г23.1 :	2:00 p.m. – 2:20 p.m. Thin Self-Resonant Structures with a High-Q for Wireless Power Transfer Aaron Stein, Phyo Aung Kyaw, Jesse Feldman-Stein, Charles Sullivan <i>Dartmouth College, United States</i>
Г23.2 :	2:20 p.m. – 2:40 p.m. Analysis and Design of a Series Self-Resonant Coil for Wireless Power Transfer Jie Li, Daniel Costinett University of Tennessee, Knoxville, United States
F23.3 :	2:40p.m. – 3:00 p.m. A Hybrid RF and Vibration Energy Harvester for Wearable Devices Son Nguyen, Rajeevan Amirtharajah <i>University of California, Davis, United States</i>
Г23.4 :	3:00 p.m. – 3:20 p.m. A 10 nW, 10 mV Signal Detector Using a 2 pA Standby Voltage Reference, for Always-on Sensors and Receivers Salah-Eddine Adami, Guang Yang, Chunhong Zhang, Plamen Proynov, Bernard Stark <i>University of Bristol, United Kingdom</i>
Г23.5 :	3:20 p.m. – 3:40 p.m. A Burst Mode Pulse Density Modulation Scheme for Inductive Power Transfer Systems Without Communication Modules Shuxin Chen, Hongchang Li, Yi Tang <i>Nanyang Technological University, Singapore</i>
Г23.6 :	4:10 p.m. – 4:30 p.m. A Dynamic Tuning Method Utilizing Inductor Paralleled with Load for Inductive Power Transfer Yeran Liu, Ruikun Mai, Pengfei Yue, Zhengyou He <i>Southwest Jiaotong University, China</i>
Г23.7 :	4:30 p.m. – 4:50 p.m. Design and Analysis of the S/P Compensated Contactless Converter for High Voltage Ignition Jingwen Gao ² , Qianhong Chen ² , Xiaoyong Ren ² , Zhiliang Zhang ² , Hui Shi ¹ , Hanzheng Ran ¹ ¹ China Academy of Engineering Physics, China; ² Nanjing University of Aeronautics and Astronautics,

CONFERENCE AND APEC. 2+18 91

China

	T23.8:	4:50 p.m. – 5:10 p.m. Transmission Characteristics Analysis of a Doublecheeked MCR WPT System with Two Receivers Under Varying Spatial Scales Weiwei Ye ¹ , Fuxin Liu ² , Tianming Mei ² , Xuling Chen ² , Ralph M. Kennel ³ ¹ Nanjing University of Aeronautics & Astronautics, China; ² Nanjing University of Aeronautics and Astronautics, China; ³ Technical University of Munich, Germany	T24.4:	3:00 p.m. – 3:20 p.m. A General Algorithm for Flexible Active Power Control of Photovoltaic Systems Hossein Dehghani Tafti ² , Ariya Sangwongwanich ¹ , Yongheng Yang ¹ , Georgios Konstantinou ³ , Josep Pou ² , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² Nanyang Technological University, Singapore; ³ University of New South Wales, Australia
~	T23.9:	5:10 p.m. – 5:30 p.m. Magnetic-Field-Model based Analysis of Two- Phase Magnetically Coupled Resonant Wireless Power Transfer Systems. Tlanming Mei ¹ , Fuxin Liu ² , Chong Jiang ² , Xuling Chen ² , Ralph Technische ³	T24.5:	3:20 p.m. – 3:40 p.m. Soft-Switching Technique for a Three-Phase Bidirectional Grid-Tie DC-AC-AC Converter Mahmoud Abdallah Sayed, Kazuma Suzuki, Takaharu Takeshita, Wataru Kitagawa <i>Nagoya Institute of Technology, Japan</i>
Wednesday	 ¹Nanjing University of Aeronautics and Astronautics China., ²Nanjing University of Aeronautics and Astronautics ,³ Universitat Munchen, Germany 2:00 p.m. – 5:30 p.m. T24: Photovotlaic & Grid Tie Systems 		T24.6:	4:10 p.m. – 4:30 p.m. Adaptive Synchronization of Grid-Connected Three-Phase Inverters by Using Virtual Oscillator Control Mingshen Li, Yonghao Gui, Juan C. Vasquez, Josep M. Guerrero Aalborg Universtiy, Denmark
	Martin (Veda Ga	vable Energy Systems Ordonez, <i>The University of British Columbia</i> aligekere, <i>Oak Ridge National Laboratory</i> 2:00 p.m. – 2:20 p.m.	T24.7:	4:30 p.m. – 4:50 p.m. Distributed Autonomous Voltage Balancing Control for a Modular IPOS DC Grid-Connected Renewable Power System Xiaofeng Dong ¹ , Hongfei Wu ¹ , Yangjun Lu ¹ , Haibing Hu ¹ , Kai Sun ² ¹ Nanjing University of Aeronautics and Astronautics, China; ² Tsinghua University, China
	T24.1: T24.2:	Distributed MPPT for Modular Differential Power Processing in Scalable Photovoltaic System Chang Liu, Yue Zheng, Deyu Li, Brad Lehman <i>Northeastern University, United States</i> 2:20 p.m. – 2:40 p.m. Reliability Evaluation of an Impedance-Source PV Microconverter Yanfeng Shen ¹ , Elizaveta Liivik ² , Frede Blaabjerg ¹ ,	T24.8:	4:50 p.m. – 5:10 p.m. Adaptive Control Method for Enhancing the Stability of Grid-Connected Inverters Under Very Weak Grid Condition Jinming Xu, Qiang Qian, Shaojun Xie Nanjing University of Aeronautics and Astronautics, China
	T24.3:	Dmitri Vinnikov ² , Huai Wang ¹ , Andrii Chub ² ¹ <i>Aalborg University, Denmark;</i> ² <i>Tallinn University of</i> <i>Technology, Estonia</i> 2:40 p.m. – 3:00 p.m. On-Line Global Maximum Power Point (GMPP) Identification of Solar PV Plants Matam Manjunath ² , Barry Venugopal Reddy ¹ , Ye Zhao ³ , Brad Lehman ³ ¹ <i>National Institue of Technology Goa, India;</i> ² <i>National Institute of Technology Goa, India;</i> ³ <i>Northeastern University, United States</i>	T24.9:	5:10 p.m. – 5:30 p.m. Multi-Purpose Generic Board for Hands-On Power Electronics Education of Different Power Converter Topologies in PV Applications Mehrdad Biglarbegian ¹ , Iman Mazhari ¹ , Hamidreza Jafarian ¹ , Namwon Kim ¹ , Babak Parkhideh ¹ , ohan Enslin ² ¹ University of North Carolina at Charlotte, ² Clemson University

6:00 p.m. – 9:00 p.m.

Social Event

(Ticket Required) HEMISFAIR BALLROOM

APEC 2018 Full Conference and Technical Session registrants will receive a social event ticket with their registration. If you have a Seminar only registration, exhibits only registration or are registered as an exhibitor, you should purchase a social event ticket by visiting the registration desk if you wish to attend the social event. You can also purchase tickets for your guest to attend. Exhibiting Companies will receive a Social Event Ticket with their Conference Registration.

.

Thursday March 8, 2018

7:00 a.m. – 8:00 a.m.

Presenter Breakfast HEMISFAIR BALLROOM C3

7:00 a.m. – 12:00 p.m.

Registration WEST REGISTRATION

8:00 a.m. – 10:00 a.m.

Spouse and Guest Breakfast RIO VISTA ROOM at MARRIOTT RIVERCENTER

8:30 a.m. – 11:30 a.m.

IS16: Reliability and Ruggedness - How to Address These Challenges in Wide Bandgap Semiconductor Devices

R00M 206

SESSION CHAIRS:

Tim McDonald, *Infineon Technologies* Jaume Roig, *ON Semiconductor*

8:30 a.m. – 8:55 a.m.

IS16.1:	GaN Reliability through Integration and Application Relevant Stress Testing
	Nick Fichtenbaum

Navitas Semiconductor, Inc., United States

8:55 a.m. - 9:20 a.m.

IS16.2: Dynamic High Temperature Operating Life Tests for GaN Hybrid-Drain-Embedded GITs – Demonstration of Highly Reliable Operations Ayanori Ikoshi, Kenichiro Tanaka, Masahiro Toki, Hiroto Yamagiwa, Kazuki Suzuki, Daijiro Arisawa,

Masahiro Hikita, Manabu Yanagihara, Yasuhiro Yasuhiro, Tetsuzo Ueda

Panasonic Corporation, Japan

9:20 a.m. – 9:45 a.m.

IS16.3: Status of Wide Bandgap Device Qualification Standards Effort by New JEDEC Committee JC70 Stephanie Watts Butler, Tim McDonald Texas Instruments. United States

CONFERENCE AND APEC. 2×18

95

Thursday

<u>Thursda</u>

96

IS16.4: **Gate Oxide and Threshold-Voltage Reliability Considerations for SiC MOSFETs** Peter Friedrichs, Thomas Aichinger Infineon Technologies, Germany 10:40 a.m. - 11:05 a.m. IS16.5: H3TRB-HVDC on SiC: A Relevant Test for Industrial Applications Jonny Ingman, Joni Jormanainen, Elena Mengotti ABB. Finland . 11:05 a.m. - 11:30 a.m. IS16.6: SiC Current Limiting Device (CLD) SOA **Determination by Accurate Electro Thermal Spice** Model Jean-Baptiste Fonder, Sophie Rollet, Dominique Tournier CALY Technologies, France 8:30 a.m. - 11:30 a.m. **IS17: Powering Servers and Datacenters ROOM 207** SESSION CHAIRS: Harry Soin, Artesyn Embedded Technologies Rick Fishbune, IBM 8:30 a.m. - 8:55 a.m. IS17.1: 2-Stage Solution for Data Centers Amin Bemat¹, Qian Ouyang¹, Rohan Samsi², Jinghai Zhou². *HP Enterprise United States*¹, *Monolithic Power* Systems² · 8:55 a.m. – 9:20 a.m. IS17.2: **Distributed System Stability in a 48V DC** Datacenter Mehran Mirjafari, Lei Wang, Guangyong Zhu Padmanabh Gharpure, John Breen, Dell EMC United States 9:20 a.m. - 9:45 a.m. IS17.3: Switched Tank Converter Technology for Next-Gen 48V Data Center Power Delivery Shuai Jiang, Chenhao Nan, Xin Li, Chee Chung, Mobashar Yazdani

9:45 a.m. – 10:10 a.m.

IS17.4: A Smart Implementation of Switched-Tank Converter System for Next-Gen 48V Data Center Power Delivery Paolo Sandri, Francesco Ghilardi, Roberto Peritore STMicroelectronics, United States

10:40 a.m. – 11:05 a.m.

IS17.5: Heterogeneously Integrated Power Stages Enable Low Profile 12-48V Voltage Regulators Robert Conner, Greg Miller Sarda Technologies, United States

11:05 a.m. – 11:30 a.m.

IS17.6: Smooth Transition between Battery and Power Supply in a Datacenter Lei Wang, Mehran Mirjafari, Kunrong Wang. Guangyong Zhu, Dell EMC United States,

8:30 a.m. – 11:30 a.m.

IS18: Topologies and Control ROOM 205

SESSION CHAIRS:

Bill Peterson, *E and M Power*

Laszlo Balogh, ON Semiconductor

8:30 a.m. – 8:55 a.m.

IS18:1: Zero Voltage Switched Interleaved Critical Conduction Mode Totem Pole Bridgeless PFC with GaN Power Stage Hrishikesh Nene, Ted Chen, Salil Chellappan, Igor An Texas Instruments, United States

-

8:55 a.m. – 9:20 a.m.

IS18.2: E-Mode GaN, 600V, 0.070hm, Utilized in 3600W_ LLC 380V to 52V Converter Moshe Domb

Infineon Technolgies, United States

9:20 a.m. - 9:45 a.m.

IS18.3: A New Buck-Boost Converter that eliminates the Right-Half-Plane-Zero Shingo Hashiguchi, Tetsuo Tateishi ROHM Semiconductor, Japan

Google, United States

		9:45 a.m. — 10:10 a.m.		10:40 a.m. — 11:05 a.m.	
	IS18.4:	Moving Up in Voltage with GaN FETs John Glaser <i>Efficient Power Conversion, United States</i>	IS19.5:	Amplifier Design Challenges for Large Area Highly Resonant Wireless Power Systems Michael de Rooij, Yuanzhe Zhang Efficient Power Conversion, United States	
		10:40 a.m. – 11:05 a.m.			
	IS18.5:	Ultra-Narrow Pulse Buck Converter	8:30 a.m. – 11:30 a.m.		
		Yuhei Yamaguchi, Tetsuo Tateishi ROHM Semiconductor, Japan	IS20: PMBus Implementation and Applications ROOM 213		
		11:05 a.m. – 11:30 a.m.	Session	I CHAIRS:	
	IS18.6:	Practical Comparison of Three Control Schemes	Ramesh Balasubramaniam, Infineon Technologies		
		used in Point-of-Load DC-DC Converters Anthony Fagnani, Carl Wu, Pradeep Shenoy <i>Texas Instruments, United States,</i>	Travis Summerlin, Texas Instruments		
				8:30 a.m. – 8:55 a.m.	
Thursday	8:30 a.m. – 11:05 a.m. IS19: Powering Mobile and Consumer Products		IS20.1:	PMBus in System Kevin Parmenter <i>Excelsys Technologies, United States</i>	
2	R00M 21	-		8:55 a.m. — 9:20 a.m.	
4	SESSION CHAIR: Thomas Hopkins, <i>ST Microlectronics</i>		IS20.2:	Attaining PMBus Adoption in Spaceborne Power Systems	
		8:30 a.m. – 8:55 a.m.		Tim Meade Cobham Semiconductor Solutions, United States	
	IS19.1:	Solutions for Fast Charging Lasse Harju	IS20.3:	9:20 a.m. — 9:45 a.m.	
		Dialog Semiconductor. Germany 8:55 a.m. – 9:20 a.m.		Server Telemetry: Insight Into Platform & Performance with Node Manager and PMBus Standard	
	IS19.2:	Emerging Application of USB PD for Rapid Charging in Mobile Devices		Mariusz Oriol Intel Technology, Poland	
		Yong Li Dialog Semiconductor, United States		9:45 a.m. – 10:10 a.m.	
		9:20 a.m. — 9:45 a.m.	IS20.4:	PMBus Adaption Over Various Transport Protocols Chris Jones	
	IS19.3:	A Digital Controlled High Density Power Converter for Low Power Applications Alfredo Medina Garcia, Manfred Schlenk, Matthias		Artesyn Embedded Technologies, United States	
				10:40 a.m. – 11:05 a.m.	
		Joachim Kasper, Gerald Deboy Infineon Technologies AG, Germany	IS20.5:	Application Profiles for Isolated and Non-Isolated DC-DC Power Modules Oleg Volfson	
	IS19.4:	9:45 a.m. – 10:10 a.m. How a Switched-Capacitor Architecture Halves		Flex Power, United States	
	1313.4.	Losses in LED Boosts		11:05 a.m. – 11:30 a.m.	
		Greg Szczeszynsk pSemi Corporation, United States	IS20.6 :	Leveraging App Profiles Firmware Standardization Michael Jones <i>Linear Technology, United States</i>	

98

Thursday

.

T25: DC-DC Converter Applications R00M 214A

DC-DC Converters

Olivier Trescases, University of Toronto David Reusch, Efficient Power Conversion Corporation

T25.1:	8:30 a.m. – 8:50 a.m. Design of a 1 kV Bidirectional DC-DC Converter with 650 V GaN Transistors Andrew Stillwell, Margaret Blackwell, Robert Pilawa-Podgurski <i>University of Illinois at Urbana-Champaign, United States</i>
T25.2:	8:50 a.m. — 9:10 a.m. Efficiency/Cost Trade-Off Design of a Multiple- Active-Bridge Converter for Smart Transformer Levy Costa, Giampaolo Buticchi, Marco Liserre <i>Christian-Albrechts-University of Kiel, Germany</i>
T25.3:	9:10 a.m. – 9:30 a.m. A 6.6kW SiC Bidirectional on-Board Charger Haoran Li ¹ , Lei Bai ¹ , Zhiliang Zhang ¹ , Shengdong Wang ¹ , Jiacheng Tang ¹ , Xiaoyong Ren ¹ , Jianfei Li ² ¹ Nanjing University of Aeronautics and Astronautics, China; ² Sineng Electric Corporation, China
T25.4:	9:30 a.m. – 9:50 a.m. Performance Evaluation of a VLC Transmitter Based on the Split of the Power Juan RodrÃguez, Daniel G. Aller, Diego G. Lamar, Javier SebastiÃ _i n <i>University of Oviedo, Spain</i>
T25.5:	9:50 a.m. – 10:10 a.m. High Current Switching Capacitor Converter for on-Package VR Stefano Saggini ² , Shuai Jiang ¹ , Mario Ursino ² , Chenhao Nan ¹ , Roberto Rizzolatti ² ¹ Google, United States; ² University of Udine, Italy
T25.6:	10:40 a.m. – 11:00 a.m. Single-Inductor Multiple-Output Converter for High-Power LED Applictions with Independent Current Control Based on SiC SBD Jinjin Liu, Hongliang Lv, Yimeng Zhang, Qingwen Song, Yuming Zhang, Xiaoyan Tang <i>Xidian University, China</i>
T25.7:	11:00 a.m. – 11:20 a.m. Modeling and Control of Sigma Converter for 48V Voltage Regulator Application Virginia Li, Mohamed Ahmed, Qiang Li, Fred Lee <i>Virginia Polytechnic Institute and State University,</i> <i>United States</i>

APEC. 2+18 CONFERENCE AND EXPOSITION 100

. . .

T26: Switched And Synchronous Reluctance Motor Drives

R00M 214R

Motor		
	Drives and Inverters	
	ramod, Nexteer Automotive	
Rakid is	slam, Nexteer Automotive	
T26.1:	8:30 a.m. – 8:50 a.m. Acoustic Noise Mitigation of Switched Reluctance Machines with Windows in Both Stator and Rotor Poles Mohammed Elamin ² , Yusuf Yasa ² , Omer Gundogmus ² , Yilmaz Sozer ² , John Kutz ¹ , Joshua Tylenda ³ , Ronnie Wright ¹ ¹ DCS, United States; ² University of Akron, United States; ³ US ARMY, United States	sznu.r.
T26.2:	8:50 a.m. – 9:10 a.m. Design of an Axial-Flux Switch Reluctance Motor for a Novel Integrated Motor-Compressor System Abdul Bandarkar, Iftekhar Hasan, Yilmaz Sozer, Alex De Abreu-Garcia University of Akron, United States	day
T26.3:	9:10 a.m. – 9:30 a.m. Torque Ripple Minimization in SRMs at Medium and High Speeds Using a Multi-Stator Windings with a Novel Power Converter Oguzhan Kilic ² , Ali Elrayyah ¹ , Yilmaz Sozer ² ¹ <i>Qatar Research Foundation, Qatar;</i> ² <i>University of Akron,</i> <i>United States</i>	
T26.4:	9:30 a.m. – 9:50 a.m. A Novel Boost Converter for Segmented-Stator Hybrid-Excitation Switched Reluctance Motor Drive with High Performance Wen Ding, Shuai Yang, Yanfang Hu <i>Xi'an Jiaotong University, China</i>	
T26.5:	9:50 a.m. – 10:10 a.m. State Space Modeling and Feedback Control of Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor Under Open Phase Faults Akm Arafat, Seungdeog Choi University of Akron, United States	
T26.6:	10:40 a.m. – 11:00 a.m. Three-Phase Four-Leg Drive for DC-Biased Sinusoidal Current Vernier Reluctance Machine An Li ¹ , Zihan Gao ¹ , Dong Jiang ¹ , Wubin Kong ¹ , Shaofeng Jia ² , Ronghai Qu ¹ ¹ Huazhong University of Science and Technology, China; ² Xi'an Jiaotong University, China	
CON		101

Thursday

T26.7:	 11:00 a.m. – 11:20 a.m. Low-Cost Sub-Fractional Horsepower Brushless Direct Current Claw-Pole Machine Topology for Fan Applications Stefan Leitner, Hannes Gruebler, Annette Muetze <i>CD-Lab for Brushless Drives for Pump and Fan</i> Applications, Electric Drives and Machines Institute, Austria 	T27.6:	10:40 a.m. – 11:00 a.m. Miller Plateau As an Indicator of SiC MOSFET Gate Oxide Degradation Ze Ni, Yanchao Li, Xiaofeng Lyu, Om Prakash Yadav, Dong Cao <i>North Dakota State University, United States</i>	
	u.m. – 11:20 a.m. Power Module Integration & Prognostics	T27.7:	 11:00 a.m. – 11:20 a.m. 6.0kV, 100A, 175kHz Super Cascode Power Module for Medium Voltage, High Power Applications Bo Gao, Adam Morgan, Yang Xu, Xin Zhao, Douglas Hopkins North Carolina State University, United States 	
Limino	Power Electronics Integration and Manufacturing Liming Liu <i>, ABB Inc.</i> Zach Pan <i>, ABB USCRC</i>		8:30 a.m. – 11:20 a.m. T28: Power Quality Oriented Control ROOM 214D	
Thursday	8:30 a.m. – 8:50 a.m. A Power Converter Integration Approach with a Multi-Functional Heat Sink Shaped Inductor Wenbo Liu ¹ , Yan-Fei Liu ¹ , Laili Wang ² ¹ Queen's University, Canada; ² Xi'an Jiaotong University, China		I Ordonez, <i>The University of British Columbia</i> Bhardwaj, <i>Texas Intrument</i> 8:30 a.m. – 8:50 a.m.	
T27.2:	8:50 a.m. – 9:10 a.m. Three-Phase Inverter Employing PCB Embedded GaN FETs Stephen Savulak, Ben Guo, Shashank Krishnamurthy <i>United Technologies Research Center, United States</i>	T28.1:	An Improved Burst-Mode Control for VIENNA Rectifiers to Mitigate DC Voltage Ripples at Light Load Xinxi Tang ² , Yang Cao ² , Yan Xing ² , Haibin Hu ² , Lidong Xu ¹ ¹ JiangSu JinFan Power Technology Co., Ltd, China; ² Nanjing University of Aeronautics and Astronautics, China	
T27.3:	9:10 a.m. – 9:30 a.m. Gate Driver Design and Continuous Operation of an Improved 1200V/200A FREEDM-Pair Half-Bridge Power Module Liqi Zhang ³ , Xin Zhao ³ , Xiaoqing Song ¹ , Qianlai Zhu ² , Soumik Sen ³ , Pengkun Liu ³ , Junhong Tong ³ , Alex Q. Huang ³ ¹ ABB, United States; ² North Carolina State University, United States; ³ University of Texas at Austin,	T28.2:	8:50 a.m. – 9:10 a.m. Control Strategy for Reduction of Current Distortion in Reverse Matrix Converter Under Unbalanced Input Conditions Dongho Choi ¹ , Yeongsu Bak ¹ , Jong-Pil Lee ² , Tae-Jin Kim ² , Kyo-Beum Lee ¹ ¹ Ajou University, Korea; ² KERI, Korea	
T27.4:	United States 9:30 a.m. – 9:50 a.m. Performance Optimization of a 1.2kV SiC High Density Half Bridge Power Module in 3D Package Xin Zhao ² , Bo Gao ¹ , Liqi Zhang ² , Douglas Hopkins ¹ , Alex Q. Huang ² ¹ North Carolina State University, United States; ² University of Texas at Austin, United States	T28.3:	9:10 a.m. – 9:30 a.m. Analysis and Design of Enhanced DFT-Based Controller for Selective Harmonic Compensation in Active Power Filters Hao Chen ¹ , Huawu Liu ¹ , Yan Xing ¹ , Haibing Hu ¹ , Kai Sun ² ¹ Nanjing University of Aeronautics and Astronautics, China; ² Tsinghua University, China	
T27.5:	9:50 a.m. – 10:10 a.m. On Condition Monitoring of High Frequency Power GaN Converters with Adaptive Prognostics Mehrdad Biglarbegian, Saman Mostafavi, Sven Hauer, Shahriar Nibir, Namwon Kim, Robert Cox, Babak Parkhideh University of North Carolina at Charlotte, United States	T28.4:	9:30 a.m. – 9:50 a.m. Analysis of Dead-Time Harmonics in Single-Phase Transformerless Full-Bridge PV Inverters Yongheng Yang ¹ , Keliang Zhou ² , Frede Blaabjerg ¹ ¹ <i>Aalborg University, Denmark;</i> ² <i>University of Glasgow,</i> <i>United Kingdom</i>	

Thursday

APEC. 2+18 CONFERENCE AND EXPOSITION 102

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
T28.5:	9:50 a.m. – 10:10 a.m. Application of Generalized Peak Current Controllers for Active Power Filters and Rectifiers with Power Factor Correction Mohammad Ebrahimi, S. Ali Khajehoddin <i>University of Alberta, Canada</i>	T29.4:	9:30 a.m. – 9:50 a.m. Integrated Control of Bridge Type Inductive Power Transfer Systems for Light Load Efficiency Improvement Sangjoon Ann, Jongeun Byun, Dongmyoung Joo, Byoung Kuk Lee Sungkyunkwan University, Korea	
T28.6:	10:40 a.m. – 11:00 a.m. Minimum Conduction Loss ZVS Control for Buck- Type Active Filter Operating As Decoupling Circuit Behnam Koushki, Praveen Jain, Alirzea Bakhshai <i>Queen's University, Canada</i>	T29.5:	9:50 a.m. – 10:10 a.m. A Reverse-Coupled Bipolar Coil Structure for an Integrated LCC-Compensated Inductive Power Transfer System Fei Lu ² , Hua Zhang ² , Chong Zhu ² , Ying Mei ¹ , Jie Zhang ¹ ,	
T28.8:	11:00 a.m. – 11:20 a.m. Improved Selective Harmonic Compensation for Single-Phase Inverters Jiao Jiao, John Hung, Robert Nelms		Chris Mi ² ¹ LG Electronics, China; ² San Diego State University, United States	
	Auburn University, United States n. – 11:20 a.m. ireless Power Transfer for EV Applications	T29.6:	10:40 a.m. – 11:00 a.m. Analysis and Designed of Three-Phase Capacitive Coupled Wireless Power Transfer for High Power Charging System Bo Luo, Ruikun Mai, Rui Shi, Zhengyou He <i>Southwest Jiaotong University, China</i>	
Wireless Power Transfer Raghav Khanna, University of Toledo Sheldon Williamson, University of Ontario Institute of Technology		T29.7:	11:00 a.m. – 11:20 a.m. Non-Linear Capacitor based Variable Capacitor for Self-Tuning Resonant Converter in Wireless Power Transfer Hulong Zeng, Fang Zheng Peng Michigan State University, United States	
T29.1:	Systems of Electric Vehicles T: Hongzhi Cui, Wenxing Zhong, Hao Li, Fengchun He, Min Chen, Dehong Xu Zhoiioan University China		8:30 a.m. – 11:20 a.m. T30: Renewable Energy Topics ROOM 217B Renewable Energy Systems	
T29.2:	8:50 a.m. – 9:10 a.m. An Optimal ZVS Angle Selection for Constant Current Charging of EV's Battery in Series-Series Compensated Wireless Power Transmission	Katherine Kim, Ulsan National Institute of Science and Technology Haoyu Wang, ShanghaiTech University		
	System Yongbin Jiang, Junwen Liu, Xiufang Hu, Laili Wang, Yue Wang, Gaidi Ning <i>Xi'an Jiaotong University, China</i> 9:10 a.m. – 9:30 a.m.	T30.1:	8:30 a.m. – 8:50 a.m. Power Management of a Self-Powered Multi- Parameter Wireless Sensor for IoT Application Dingyi He, Babak Fahimi <i>The University of Texas at Dallas, United States</i>	
T29.3:	Optimization of Ferrite Core to Reduce the Core Loss in Double-D Pad of Wireless Charging System for Electric Vehicles Mostak Mohammad, Seungdeog Choi University of Akron, United States	T30.2:	8:50 a.m. – 9:10 a.m. Multi-Port Bidirectional Three-Phase AC-DC Converter with High Frequency Isolation Allan Uchoa Barbosa ¹ , Bruno Ricardo de Almeida ² , Demercil de Souza Oliveira Jr. ¹ , Paulo Peixoto Praça ¹ , Luiz Henrique S. C. Barreto ¹ ¹ Federal University of Ceará, Brazil, ² University of Fortaleza	

104

Thursday

T30.3:	9:10 a.m. – 9:30 a.m. A New Vector Control of Brushless Doubly-Fed Induction Generator with Transient Current Compensation for Stand-Alone Power Generation Applications Yi Liu ² , Wei Xu ² , Kailiang Yu ² , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² Huazhong University of Science and Technology, China
T30.4 :	9:30 a.m. – 9:50 a.m. A Passivity-Based Decentralized Control Strategy for Current-Controlled Inverters in AC Microgrids Hui Yu, Hao Tu, Srdjan Lukic North Carolina State University, United States
T30.5:	9:50 a.m. – 10:10 a.m. Power Management of Virtual Synchronous Generators Through Using Hybrid Energy Storage Systems Jingyang Fang, Xiaoqiang Li, Yi Tang, Hongchang Li <i>Nanyang Technological University, Singapore</i>
T30.6 :	10:40 a.m. – 11:00 a.m. Design of Virtual Synchronous Generators with Enhanced Frequency Regulation and Reduced Voltage Distortions Jingyang Fang, Xiaoqiang Li, Yi Tang, Hongchang Li Nanyang Technological University, Singapore
T30.7:	11:00 a.m. – 11:20 a.m. A New Power Flow Control Approach for Power Converters in Single-Phase Microgrids Sajjad Makhdoomi Kaviri ¹ , Hadis Hajebrahimi ¹ , Majid Pahlevani ² , Praveen Jain ¹ , Alireza Bakhshai ¹ ¹ <i>Queen's University, Canada; ²University of Calgary,</i> <i>Canada</i>
8·30 au	m. — 11:20 a.m.
	nversion Systems for Electric Vehicles
Transp	ortation Power Electronics
Serkan	Dusmez, <i>Texas Instruments</i>
Yonghe	ng Yang, Aalborg University
T31.1 :	8:30 a.m. – 8:50 a.m. High Efficiency SiC Traction Inverter for Electric Vehicle Applications Jianglin Zhu, Hyeokjin Kim, Hua Chen, Robert Erickson, Dragan Maksimović

Thursday

University of Colorado Boulder, United States

	Ningbo China, China; ³ University of Kiel, Germany; ⁴ University of Parma, Italy
T31.3:	9:10 a.m. – 9:30 a.m. Resonant Switched Capacitor Converter Based DC Auto-Transformer for Urban Rail Transit Miao Wang, Xiaofeng Yang, Lulu Wang, Trillion Zheng <i>Beijing Jiaotong University, China</i>
T31.4:	9:30 a.m. – 9:50 a.m. A Single-Stage Bi-Directional AC-DC Converter with No Electrolytic Capacitor for EV Behnam Koushki, Praveen Jain, Alireza Bakhshai <i>Queen's University, Canada</i>
T31.5:	9:50 a.m. – 10:10 a.m. A Unity Power Factor Active Rectifier with Optimum Space-Vector Predictive DC Voltage Control for Variable Frequency Supply Suitable for More Electric Aircraft Applications Joseph Benzaquen ¹ , Mohammad Shadmand ¹ , Arlie Stonestreet II ² , Behrooz Mirafzal ¹ ¹ Kansas State University, United States; ² Ultra-ICE, United States
T31.6:	10:40 a.m. – 11:00 a.m. A Hybrid Negative Current Compensation System for High-Speed Railway Power System Jiaxin Yuan, Feiran Xiao, Chenmeng Zhang, Zhou Ni, Yongheng Zhong <i>Wuhan University, China</i>
T31.7:	11:00 a.m. — 11:20 a.m. Discontinuous Conduction Mode Three Phase

A Quadruple Active Bridge Converter As the Storage Interface in the More Electric Aircraft Giampaolo Buticchi², Levy Costa³, Davide Barater⁴,

¹SerTec S.L., Germany; ²The University of Nottingham

Marco Liserre³, Eugenio Dominguez¹

8:50 a.m. - 9:10 a.m.

T31.2:

Buck-Boost Derived PFC Converter for More Electric Aircraft with Reduced Switching, Sensing and Control Requirements Sivanagaraju Gangavarapu¹, Akshay Rathore¹, Deepak Fulwani² ¹Concordia University, Canada; ²Indian Institute of Technology, Jodhpur, India ...

. . .

. . .

. . .

T32: Grid Applications

R00M 217D

hursda

Power Electronics Applications

. . . .

Mike Seeman, ETA power Zhong Nie, SF Motors

0 00

T32.1:	Reactive Power Compensation and Resonance Damping for Three-Phase Buck-Type Dynamic Capacitor Liangli Xiong ² , Ke Dai ² , Xinwen Chen ² , Xiaosheng Wang ² , Ziwei Dai ¹ ¹ Department of Electrical, Computer and System, Engineering Rensselaer Polytechnic Institute, United States; ² School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, China
T32.2:	8:50 a.m. – 9:10 a.m. Duty-Cycle Plus Phase-Shift Control for a Dual Active Half Bridge Based Bipolar DC Microgrid Fei Gao, Dan Rogers <i>University of Oxford, United Kingdom</i>
T32.3:	9:10 a.m. – 9:30 a.m. Investigation of Control and Applications of Modular Multilevel Converter with Sub-Modular Series IGBTs Lu Yue, Xiu Yao SUNY at Buffalo, United States
T32.4 :	9:30 a.m. – 9:50 a.m. Three-Phase Buck-Boost Y-Inverter with Wide DC Input Voltage Range Michael Antivachis, Dominik Bortis, Lukas Schrittwieser, Johann Kolar <i>EidgenĶssische Technische Hochschule Zürich,</i> <i>Switzerland</i>
T32.5:	9:50 a.m. – 10:10 a.m. Energy Storage System Control Strategy to Minimize the Voltage and Frequency Fluctuation in the Microgird Qin Lei, Yunpeng Si, Yifu Liu Arizona State University, United States
T32.6:	10:40 a.m. – 11:00 a.m. A Novel Three-Phase Bidirectional DC-DC Converter For UPS Applications Adel Abosnina, Gerry Moschopoulos <i>Western University, Canada</i>

11:00 a.m. - 11:20 a.m.

T32.7:	Model Predictive Direct Current Control Strategy for Three-Level T-Type Rectifier under Unbalanced Grid Voltage Conditions				
	Xiaoyan Li, Chenghui Zhang, Alian Chen, Xiangyang Xing, Guangxian Zhang Shandong University				

11:30 a.m. – 2:00 p.m.

Dialogue Session

(for detailed information see page 144) HEMISFAIR BALLROOM

2:00 p.m. - 3:40 p.m.

IS21: Test & Measurement R00M 206

SESSION CHAIR:

Tom Neville. *Tektronix*

2:00 p.m. – 2:25 p.m.

IS21.1:	Evaluation of Measurement Techniques for High-				
	Speed GaN Transistors				
	Suvankar Biswas ¹ , Tom Neville ² .				
	Efficient Power Conversion Corporation United States ¹ ,				
	Tektronix Inc., United States ² ,				
	•••••••••••••••••••••••••				

2:25 p.m. - 2:50 p.m.

IS21.2: WBG Power Circuit Simulation with Extensive **Device Characterization and Modeling** Noriyoshi Hashimoto¹, Ryo Takeda¹, Tatsuya Yanagi². Hiroyuki Sakairi², Naotaka Kuroda², Ken Nakahara², Keysight Technologies Japan¹, ROHM Semiconductor, Japan²

2:50 p.m. - 3:15 p.m.

IS21.3:	Fundamentals of 4-Quadrant Power: New Approaches in Bi-Directional AC Loading
	Martin Weiss, Ben Jackson
	NH Research, Inc. (NHR) United States
	•••••••••••••••••••••••••••••••••••••••

3:15 p.m. - 3:40 p.m.

IS21.4: Scalable Platform for In-Circuit Reliability Testing of SiC MOSFETs and Diodes Emulating Real-Life **Voltage and Current Stresses** Gin Sheh, Xuning Zhang, Sujit Banerjee, Levi Gant, Monolith Semiconductor Inc., United States

IS22: Passive Components

ROOM 205

Thursd

SESSION CHAIR:

George Slama, Würth Electronics

.....

2:00 p.m. – 2:25 p.m.

IS22.1: **High Ripple Magnetics** Stephen Schlarman Würth Elektronik, United States

2:25 p.m. - 2:50 p.m.

IS22.2: **High Performance Pulse Load Surface Mount** Resistors Breno Albuquerque

Vishay Intertechnology, Inc., United States

2:50 p.m. - 3:15 p.m.

IS22.3: **Design Selection of Ferrite and Powder Inductors** using New SPICE Models Zhuomin Liu, Clarita Knoll, Ramdey Kanapady, Tissaphern Mirfakhrai. Eaton, United States

3:15 p.m. - 3:40 p.m.

Near Field Radiation of Storage Inductors in Power IS22.4: Electronics – Causes, Prevention & Suppression George Slama, Ranjith Bramanpalli Würth Elektronik eiSos GmbH. United States

2:00 p.m. - 3:40 p.m.

IS23: Market Analysis and Semiconductor Fabrication Business

ROOM 213

Pierric Gueguen, Yole Developpement

Indumini Ranmuthu. Texas Instruments

2:00 p.m. - 2:25 p.m.

IS23.1: Status of Power Electronic Industry: Market and **Technology Trends** Mattin Grao Txapartegi Yole Développement, France

2:25 p.m. – 2:50 p.m.

IS23.2: **Market Forecasts for SiC and GaN Power** Semiconductors Kevin Anderson, Richard Eden, Michael Markides

IHS Markit. United States

2:50 p.m. – 3:15 p.m. IS23.3: Which Business Model (Foundry or IDM) for GaN and SiC Market? Ana Villamor Yole Développement, France 3:15 p.m. - 3:40 p.m. IS23.4: Foundry Solutions for Integrated Power Management Trends Erez Sario TowerJazz, Israel 2:00 p.m. - 5:30 p.m. **T33: High Conversion Ratio Converters ROOM 214A DC-DC Converters** Xin Zhang, IBM Robert Pilawa, UC Berkeley 2:00 p.m. – 2:20 p.m. T33.1: A Novel and Simple Hybrid DC-DC Converter of **Resonant Forward and PWM Flyback** Han Peng¹, Mengtian Yu², Jin Ke², Ming Xu¹ ¹FSP-Powerland Technology, China; ²Nanjing University of Aeronautics and Astronautics. China 2:20 p.m. - 2:40 p.m. **Boost Half-Bridge DC-DC Converter with** T33.2: **Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications** Dmitri Vinnikov², Andrii Chub², Elizaveta Liivik¹, Frede Blaabjerg¹, Yam Siwakoti³ ¹Aalborg University, Denmark; ²Tallinn University of Technology, Estonia; ³University of Technology Sydney, Australia 2:40 p.m. - 3:00 p.m. A Novel High-Gain Three-Phase DC-DC T33.3: **PWM Boost Converter** Adel Abosnina, Gerry Moschopoulos Western University, Canada . 3:00 p.m. - 3:20 p.m. A Switched-Boost DC/DC Converter with High T33.4: **Voltage Gain and Continuous Input Current** Ali Mostaan², Ahmed Abdelhakim³, Mohsen Soltani¹, Frede Blaabierg¹ ¹Aalborg University, Denmark; ²Iranian Central Oil Field Company, Iran; ³University of Padova, Italy

T33.5:	3:20 p.m. – 3:40 p.m. Closed-Loop Voltage Control of a GaN-Based Modular Multilevel Clamped Capacitor Converter Liyao Wu, Maryam Saeedifard Georgia Institute of Technology, United States	T34.2
T33.6:	4:10 p.m. – 4:30 p.m. Direct 400 VDC to 1 VDC Power Conversion with Input Series Output Parallel Connection for Data Center Power Supplies Yutian Cui, Leon Tolbert, Daniel Costinett, Fred Wang, Benjamin Blalock <i>university of Tennessee, United States</i>	T34.3
T33.7:	4:30 p.m. – 4:50 p.m.	T34.4
T33.8:	4:50 p.m. – 5:10 p.m.	T34.5
T33.9:	5:10 p.m. – 5:30 p.m. A Phase-Shift-Based Synchronous Rectification Scheme for Bi-Directional High-Step-Down CLLC Resonant Converters Yucheng Gao, Kai Sun, Xiang Lin, Zhiqiang Guo <i>Tsinghua University, China</i>	T34.6
	p.m. – 5:30 p.m. Power Electronics for Utility Interface – Control 1214B	T34.7
Pow	er Electronics for Utility Interface	
Yongh	neng Yang <i>, Aalborg University</i> I Pahlevani <i>, University of Calgary</i>	T34.8
T34.1:	2:00 p.m. – 2:20 p.m. Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Yuri Panov, Milan Jovanović, Brian Irving Delta Products Corp, United States	

APEC. 2+18 CONFERENCE AND EXPOSITION

34.2:	2:20 p.m. – 2:40 p.m. A Hardware Decoupling Method for Series- Resonance-Based Isolated Three-Port DC/DC Converters Panbao Wang ² , Wei Wang ² , Dianguo Xu ² , Xiaonan Lu ¹ ¹ Argonne National Laboratory, United States; ² Harbin Institute of Technology, China
34.3:	2:40 p.m. – 3:00 p.m. A Partially Rated DC-DC Converter for Power Flow Control in Meshed LVDC Distribution Grids Pavel Purgat, Ryan Adilardi Prakoso, Laurens Mackay, Zian Qin, Laura Ramirez-Elizondo, Pavol Bauer <i>TU Delft, Netherlands</i>
34.4:	3:00 p.m. – 3:20 p.m. A Carrier Magnitude Varying Modulation for Distributed Static Series Compensator to Achieve a Maximum Reactive Power Generating Capability Yunting Liu, Fang Zheng Peng Michigan State University, United States
34.5:	3:20 p.m. – 3:40 p.m. Asymmetric Low-Voltage Ride-Through Scheme and Dynamic Voltage Regulation in Distributed Generation Units Masoud M. Shabestary, Shahed Mortazavian, Yasser A-R. I. Mohamed University of Alberta, Canada
34.6:	4:10 p.m. – 4:30 p.m. Smart Transformer Universal Operation Youngjong Ko, Andrii Chub, Levy Costa, Markus Andresen, Marco Liserre <i>Kiel University, Germany</i>
34.7:	4:30 p.m. – 4:50 p.m. Proportional Integral – Resonant and Dual Loop Current Control Structure Comparison for Grid Connected Converters in the Rotating Frame Srinivas Gulur, Vishnu Mahadeva Iyer, Subhashish Bhattacharya North Carolina State University, United States
34.8:	4:50 p.m. – 5:10 p.m. A Single-Phase Self-Synchronized Synchronverter with Bounded Droop Characteristics – Tarek Younis ¹ , Mohamed Ismeil ¹ , Mohamed Orabi ¹ , Essam Hussain ² LABEAC Agreent University Fount:

¹APEARC, Aswan University, Egypt; ²University of Sheffield, United Kingdom

113

Thursday

112

Thursday

	T34.9:	5:10 p.m. – 5:30 p.m. Optimal Design of Hybrid Battery Energy Storage System for Minimizing the Number of Batteries with High Efficiency Control Algorithm Based on Fuzzy Logic Tae-Won Noh, Jung-Hoon Ahn, Hyo Min Ahn, Byoung Kuk Lee	T35.5:	3:20 p.m. – 3:40 p.m. Transient Analysis of a Modular Multilevel Converter with Coupled Arm Inductors Bogdan Džonlaga, Davi Rabelo Joca, Loïc Quéval, Jean-Claude Vannier <i>CentraleSupélec Paris, France</i>
	2:00 p.r T35: M i	Sungkyunkwan University, Korea n. – 5:10 p.m. Ilti-level Inverters and Converters	T35.6:	4:10 p.m. – 4:30 p.m. Capacitor Voltage Balancing of a Nested T-Type Four-Level Inverter Using Space Vector Modulation Ahoora Bahrami, Mehdi Narimani <i>McMaster University, Canada</i>
Th	Scott Ra	14C Drives and Inverters amsay, DRS Consolidated Controls por, DRS Consolidated Controls	T35.7:	4:30 p.m. – 4:50 p.m. Spatial Repetitive Controller for Improved Steady State Performance of Droop Regulated Modular Multilevel Converter in Wind Farm Application Sandeep Kolluri, Naga Brahmendra Gorla, Rajesh Sapkota, Sanjib Kumar Panda
Thursday	T35.1:	2:00 p.m. – 2:20 p.m. A Novel Switched-Capacitor Multilevel Inverter Offering Modularity in Design Yat Chi Fong, Raghu Raman Sekhar, Moonson Manxin Chen, Ka Wai Eric Cheng <i>The Hong Kong Polytechnic University, Hong Kong</i>	T35.8:	National University of Singapore, Singapore 4:50 p.m. – 5:10 p.m. A Novel Zero-Sequence Current Elimination PWM Scheme for an Open-End Winding Motor Drive with Dual Two-Level Inverter Zewei Shen, Dong Jiang, Jianan Chen, Ronghai Qu
	T35.2:	2:20 p.m. – 2:40 p.m. Quasi Two-Level PWM Operation of a Nine-Arm Modular Multilevel Converter for Six-Phase Medium-Voltage Motor Drives Mohamed Diab ² , Grain Adam ² , Barry Williams ² , Ahmed Massoud ¹ , Shehab Ahmed ³ ¹ Qatar University, Qatar; ² Strathclyde University,	T36: O p ROOM 2	
		United Kingdom; ³ Texas A&M University at Oatar, Oatar		s and Components
	T35.3:	2:40 p.m. – 3:00 p.m. Hardware Design of a 1.7 kV SiC MOSFET Based MMC for Medium Voltage Motor Drives	-	s Hopkins, North Carolina State University Ic Schanen, Grenoble Institute of Technology
		He Li ² , Karun Potty ² , Ziwei Ke ² , Jianyu Pan ² , Yingzhuo Chen ¹ , Fan Zhang ¹ , Muneer Al Sabbagh ¹ , Will Perdikakis ¹ , Gengyao Li ¹ , Xi Ye ¹ , Risha Na ¹ , Julia Zhang ² , Longya Xu ² , Jin Wang ² ¹ Ohio State University, United States; ² The Ohio State University, United States	T36.1:	2:00 p.m. – 2:20 p.m. Junction Temperature Estimation of SiC MOSFETs Based on Extended Kalman Filtering Xiangyu Han, Maryam Saeedifard <i>Georgia Institute of Technology, United States</i>
	T35.4:	3:00 p.m. – 3:20 p.m. Power-Dense Multilevel Inverter Module Using Interleaved GaN-Based Phases for Electric Aircraft Propulsion Nathan Pallo, Thomas Foulkes, Tomas Modeer, Samantha Coday, Robert Pilawa-Podgurski <i>University of Illinois, United States</i>	T36.2:	2:20 p.m. – 2:40 p.m. An Accurate Calorimetric Method for Measurement of Switching Losses in Silicon Carbide (SiC) MOSFETs Anup Anurag ¹ , Sayan Acharya ¹ , Yos Prabowo ¹ , Ghanshyamsinh Gohil ² , Hulgize Kassa ¹ , Subhashish Bhattacharya ¹ ¹ North Carolina State University, United States; ² University of Texas at Dallas, United States

T36.3 :	2:40 p.m. – 3:00 p.m. High Voltage SiC Super-Cascode Power Switch Parameter Optimization for Loss Reduction Xintong Lyu, He Li, Boxue Hu, Zhuxuan Ma, Jin Wang	2:00 p.i	n. – 5:30 p.m. agnetics Modeling 17A
	The Ohio State University, United States	Model	ing and Simulation
T36.4 :	3:00 p.m. – 3:20 p.m. High Current Medium Voltage Solid State Circuit Breaker Using Paralleled 15kV SiC ETO) Burgos <i>, Virginia Tecl</i> p Bala <i>, ABB Inc. USCI</i>
	Liqi Zhang ³ , Richard Woodley ² , Xiaoqing Song ¹ , Soumik Sen ³ , Xin Zhao ³ , Alex Q. Huang ³ ¹ ABB USCRC, United States; ² North Carolina State University, United States; ³ University of Texas at Austin, United States	T37.1:	2:00 p.m. – 2:20 p.m. Understanding Mid Switching Transier Design with P-Cell Fei Yang ² , Zhiqiang V
T36.5:	3:20 p.m. — 3:40 p.m. Experimental Evaluation of IGCT Converters with Reduced di/dt Limiting Inductance Tianyu Wei, Qiang Song, Jianguo Li, Biao Zhao,		Steven Campbell ¹ , Fr ¹ Oak Ridge Nationa L of Tennessee, Knoxvi
	Zhengyu Chen, Rong Zeng State Key Lab. of Power Systems, Department of Electrical Engineering, Tsinghua University, China	T37.2 :	2:20 p.m. – 2:40 p.m. Modeling of Variab Including Hysteres Sarah Saeed, Jorge (
T36.6:	4:10 p.m. – 4:30 p.m. Optimal Control Strategies for SiC MOSFET and Si IGBT Based Hybrid Switch Zongjian Li, Jun Wang, Xi Jiang, Z.John Shen, Xin Yin, Cheng Zeng, Linfeng Deng <i>Hunan University, China</i>	T37.3 :	Universidad de Ovieco 2:40 p.m. – 3:00 p.m. Minimum Loss Ope Inductors Panteleimon Papama Johann Walter Kolar
T36.7:	4:30 p.m. – 4:50 p.m. Increasing Emitter Efficiency in 3.3-kV Enhanced Trench IGBTs for Higher Short-Circuit Capability Paula Diaz Reigosa ¹ , Francesco Iannuzzo ¹ , Munaf Rahimo ² , Chiara Corvasce ² , Frede Blaabjerg ¹ ¹ Aalborg University, Denmark; ² ABB Switzerland Ltd. Semiconductors, Switzerland	T37.4 :	ETH Zurich, Switzerla 3:00 p.m. – 3:20 p.m. Permeance Based Hysteresis with Inc Min Luo ¹ , Drazen Duj ¹ EPFL, Power Electron ² Plexim GmbH, Switz
T36.8:	4:50 p.m. – 5:10 p.m. Thermal Resistor and Capacitor Parameter Identification Using Cooling Curve of IGBT Module Jun Zhang ¹ , Xiong Du ¹ , Shuai Zheng ¹ , Heng-Ming Tai ² ¹ Chongqing University, China; ² University of Tulsa, United States	T37.5:	3:20 p.m. – 3:40 p.m. Estimation and Mir Inductance in 135 J Bryce Aberg, Radha S Wensong Yu, Iqbal H North Carolina State
T36.9:	5:10 p.m. – 5:30 p.m. Improved Dynamic Voltage Sharing in Multilevel Converters Through Diode Characterization Juan Ramirez ¹ , Luke Solomon ² , Daniel Opila ³ ¹ GE Healthcare, United States; ² GE Power, United States; ³ United States Naval Academy, United States	T37.6 :	4:10 p.m. – 4:30 p.m. Modeling and Redu for Isolated Power Yingjie Zhang ² , Shuo ¹ Texas Instruments Ir Florida United State

0 p.m.

s Modeling Design & Applications

Simulation

Virginia Tech BB Inc. USCRC

> standing Middle-Point Inductance's Effect on hing Transients for Multi-Chip SiC Package n with P-Cell/N-Cell Concept

g², Zhiqiang Wang¹, Zheyu Zhang², Campbell¹, Fred Wang², Madhu Chinthavali¹ idge Nationa Lab, United States; ²The University nessee, Knoxville, United States

m. – 2:40 p.m.

ing of Variable Magnetic Elements ling Hysteresis and Eddy Current Losses Saeed, Jorge Garcia, Ramy Georgious sidad de Oviedo, Spain

m. — 3:00 p.m. um Loss Operation of High-Frequency tors eimon Papamanolis, Florian Krismer, n Walter Kolar irich, Switzerland

m. – 3:20 p.m.

ance Based Modeling of Magnetic esis with Inclusion of Eddy Current Effect 10¹, Drazen Dujic¹, Jost Allmeling² Power Electronics Laboratory, Switzerland; n GmbH, Switzerland

m. – 3:40 p.m.

ation and Minimization of Power Loop ance in 135 kW SiC Traction Inverter Aberg, Radha Sree Krishna Moorthy, Li Yang, ong Yu, Igbal Husain Carolina State University, United States

ing and Reduction of Radiated EMI lated Power Converters Zhang², Shuo Wang², Yongbin Chu¹ Instruments Inc., United States; ²University of Florida, United States

Dursd

T37.7:	4:30 p.m. – 4:50 p.m. Multi-Variable Optimization Methodology for Medium-Frequency High-Power Transformer Design Employing Steepest Descent Method Annoy Kumar Das ² , Zhongbao Wei ¹ , Baylon G. Fernandes ² , Haonan Tian ¹ , Madasamy P. Thevar ¹ , Shuyu Cao ¹ , Vaisambhayana B. Sriram ¹ , Anshuman Tripathi ¹ , Philip C. Kjær ³ ¹ Energy Research Institute, NTU, Singapore; ² Indian Institute of Technology, Bombay, India; ³ Vestas Wind System, Denmark
T37.8:	4:50 p.m. – 5:10 p.m. AC Winding Loss in Closed Core Thin Film Transformers Accounting for Two Dimensional Magnetic Fields Ciaran Feeney, Ningning Wang Sengled, China
T37.9:	5:10 p.m. – 5:30 p.m. Design for Reliability and Robustness Tool Platform for Power Electronic Systems – Study Case on Motor Drive Applications Ionut Vernica, Huai Wang, Frede Blaabjerg Aalborg University, Denmark
	n. – 5:30 p.m. ntrol Application 17B
Control	
Seungde	eog Choi, The University of Akron
Shamim	Choudhury, Texas Instruments
T38.1:	2:00 p.m. – 2:20 p.m. Efficiency Improvement of Three Port High Frequency Transformer Isolated Triple Active Bridge Converter Ritwik Chattopadhyay ¹ , Ghanshyam Gohil ² , Sayan
	Acharya ¹ , Viju Nair ¹ , Subhashish Bhattacharya ¹ ¹ NCSU, United States; ² UT Dallas, United States

T38.3:	2:40 p.m. – 3:00 p.m. Research on Different Balance Control Strategies for a Power Electronic Traction Transformer Jingxi Yang, Jianqiang Liu, Jiepin Zhang, Nan Zhao, Trillion Zheng <i>Beijing Jiaotong University, China</i>
T38.4 :	3:00 p.m. – 3:20 p.m. State-of-Health Indication Method for Li-Ion Batteries Zhiyong Xia, Jaber Abu Qahouq <i>The University of Alabama, United States</i>
T38.5:	3:20 p.m. — 3:40 p.m. Virtual Resistor Based Active Damping of LC Filter in Standalone Voltage Source Inverter Anil Adapa, Vinod John <i>Indian Institute of science, India</i>
T38.6:	4:10 p.m. – 4:30 p.m. Analysis and Control of a Transformerless Series Injector Based on Paralleled H-Bridge Converters for Measuring Impedance of Three-Phase AC Power Systems Zeng Liu ³ , Igor Cvetkovic ² , Zhiyu Shen ¹ , Dushan Boroyevich ² , Rolando Burgos ² , Jinjun Liu ³ ¹ General Electric Global Research Center, United States; ² Virginia Tech, United States; ³ Xi'an Jiaotong University, China
T38.7:	4:30 p.m. – 4:50 p.m. Improved Zero-Crossing Distortion of a Boundary-Conduction-Mode Boost Converter with Digital Average-Current-Mode Control Robert Ryan ² , John Hayes ² , Richard Morrison ¹ , Diarmuid Hogan ¹ ¹ Excelsys Technologies, Ireland; ² University College Cork, Ireland
T38.8:	4:50 p.m. – 5:10 p.m. Online Condition Monitoring Based Dead-Time Compensation for High Frequency SiC Voltage Source Inverter Jacob Dyer, Zheyu Zhang, Fred Wang, Daniel Costinett, Leon Tolbert, Benjamin Blalock University of Tennessee, United States
T38.9:	5:10 p.m. – 5:30 p.m. A 150V Monolithic Synchronous Gate Driver with Built-in ZVS Detection for Half-Bridge Converters Lin Cong, Hoi Lee <i>The University of Texas at Dallas, United States</i>

118 APEC. 2+18 CONFERENCE AND EXPOSITION

Thursday

	2:00	p.m.	- 5:30	p.m.
--	------	------	--------	------

T39: Renewable Energy Converter Topologies ROOM 217C

Renewable Energy Systems

Jin Wang *, Ohio State University* Akshay Rathore*, Concordia University*

2:00 p.m. – 2:20 p.m.

T39.1:	High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable			
	Energy Systems			
	Zhe Zhang, Kevin Tomas-Manez, Yudi Xiao,			
	Michael A. E. Andersen			
	Technical University of Denmark, Denmark			
	2:20 p.m. – 2:40 p.m.			
T39.2 :	Power Plateau and Anti-Power Phenomenon of			

Dual Active Bridge Converter with Phase-Shift Modulation Yudi Xiao¹, Zhe Zhang², Xingkui Mao¹, Kevin Tomas Manez², Michael A. E. Andersen²

¹Fuzhou University, China; ²Technical University of Denmark, Denmark

2:40 p.m. – 3:00 p.m.

T39.3: Hybrid Resonant Half-Bridge DC/DC Converter with Wide Input Voltage Range Bumyun Kim², Sooa Kim², Dong-Young Huh¹, Jung-Hwan Choi¹, Minsung Kim² ¹LG Innotek, Korea; ²Pohang University of Science and Technology, Korea 3:00 p.m. – 3:20 p.m.

 T39.4: Sensorless Phase Shift Control for Phase Shifted DC-DC Converters for Eliminating DC Transients from Transformer Winding Currents Ritwik Chattopadhyay, Utkarsh Raheja, Ghanshyam Gohil, Viju Nair, Subhashish Bhattacharya North Carolina State University, United States

3:20 p.m. – 3:40 p.m.

T39.5: System-Level Lifetime-Oriented Power Sharing Control of Paralleled DC/DC Converters Saeed Peyghami, Pooya Davari, Frede Blaabjerg Aalborg University, Denmark

4:10 p.m. – 4:30 p.m.

T39.6: Capacitor Current Compensation Scheme for Flyback Based Photovoltaic AC Module Oscar Montes¹, Sungho Son¹, Jong-Woo Kim²,

Minsung Kim¹ ¹Pohang University of Science and Technology, Korea; ¹Pohang University of Science and Technology, El Salvador; ²Virginia Polytechnic Institute and State University, Korea

120	PEC	2+1	18	CONFERENCE AND EXPOSITION
				EXPOSITION

4:30 p.m. – 4:50 p.m.

T39.7:	Analysis of Switched Supercapacitor Circuit for Varying Energy Harvesting Source Conditions David Newell, Maeve Duffy
	NUIG, Ireland

4:50 p.m. - 5:10 p.m.

T39.8: Bumpless Transfer of Non-Inverting Buck Boost Converter Among Multiple Working Modes Jianjun Ma, Miao Zhu, Xiuyi Li, Xu Cai Shanghai Jiao Tong University, China

5:10 p.m. - 5:30 p.m.

T39.9:	Current-Fed Isolated LCC-T Resonant Converter with ZVS and Improved Transformer Utilization
	Venkata Ratnam Vakacharla ¹ , Akshay Kumar Rathore ¹
	Rajesh Kumar ²
	¹ Concordia University, Canada; ² Malviya National
	Institute of Technology, India

2:00 p.m. – 5:30 p.m.

T40: Industrial Applications

R00M 217D

Power Electronics Applications

Jim Moss, Tl

Lanhua Zhang, *Texas Instruments*

2:00 p.m. – 2:20 p.m.

T40.1: IC for Online EIS in Automotive Batteries and Hybrid Architecture for High-Current Perturbation in Low-Impedance Cells Zhe Gong⁴, Zhi Liu⁴, Yi Wang⁴, Kshitij Gupta⁴, Carlos Da Silva⁴, Todd Liu¹, Z.H. Zheng², W.P. Zhang², Joop van Lammeren³, Henk Jan Bergveld³, C. H. Amon⁴, Olivier Trescases⁴ ¹Datang NXP Semiconductor, China; ²Datang NXP Semiconductors, China; ³NXP Semiconductors, Netherlands; ⁴University of Toronto, Canada 2:20 p.m. – 2:40 p.m. T40.2: An Online Battery Impedance Spectrum

Measurement Method with Increased Frequency Resolution Zhiyong Xia¹, Jaber Abu Qahouq² ¹The University of Alabama, United States;

²The University of Alabama / ECE, United States;

2:40 p.m. – 3:00 p.m.

T40.3: Design and Implementation of a Distributed Control Structure for Modular Multilevel Matrix Converter

Jian Liu², Wenxi Yao², Zhengyu Lu², Jiankai Ma¹ ¹Newcastle University, United Kingdom; ²Zhejiang University, China

140.4.	Voltage Boost Converter for Discontinuous Conduction Mode and Portable Applications Frank Vanselow ¹ , Bernadette Kinzel ¹ , Linus Maurer ² , Erkan Isa ¹ ¹ Fraunhofer EMFT, Germany; ² Universität der Bundeswehr, Germany
T40.5:	3:20p.m. – 3:40 p.m. A Novel Bidirectional Three-Phase AC-DC/DC-AC Converter for PMSM Virtual Machine System with Common DC Bus Arvind H. Kadam, Rishi Menon, Sheldon S. Williamson <i>University of Ontario Institute of Technology, Canada</i>
T40.6:	4:10 p.m. – 4:30 p.m. A Series-AC-Link ISOP AC-AC Converter with Two Power Cells Ehsan Afshari, Mahshid Amirabadi <i>Northeastern University, United States</i>
T40.7:	4:30 p.m. – 4:50 p.m. Analysis and Design Method for Parallel Quasi Resonant Inverter in Induction Heating Applications Isaac Nam <i>GE Appliances, a Haier Company, United States</i>
T40.8:	4:50 p.m. – 5:10 p.m. SiC Solid State Circuit Breaker with an Adjustable Current-Time Tripping Profile Yanjun Feng, Yuanfeng Zhou, Z. John Shen <i>Illinois Institute of Technology, United States</i>
T40.9:	5:10 p.m. – 5:30 p.m. Design of a High Power MEMS Relay with Zero Voltage Switching and Isolatedpower and Signal Transfer Yan Zhang ² , Wenbo Liu ² , Lei Kou ² , Yan-Fei Liu ² , Chris Keimel ¹ ¹ Menlo Microsystems, Canada; ² Queen's University, Canada

3:00 p.m. - 3:20 p.m.

T40 4.

A Non looloted Asynchronous Low Power High

Professional Education Seminars

as of 2.15.18

APEC strives to offer seminars with a practical mix of theory and application for the professional working in power electronics. APEC 2018 features 18 professional education seminars with a broad range of topics.

Sunday, March 4

9:30 a.m. - 6:00 p.m.

Session One, Track 1 (S01)

Fundamentals of Switch Mode Power Conversion Robert V. White

R00M 217D

9:30 a.m.- 1:00 p.m.

Today's switch-mode power converters are extraordinary devices converting power with efficiencies approaching 100% and power conversion densities into the 100's of watts per cubic inch. Just how do they do that? This seminar is a look "under the hood" of switch mode power converter. Imagine looking under the hood of a car at the engine with a mechanic. The mechanic would describe all of the various parts, like pistons and fuel injectors, and how they work together to create the power to drive the car. This seminar is a "look under the hood" of switch mode power converters. The goal is to present the principles and concepts needed to understand how switch mode converters work without a deep technical dive into the details.

The first half of the seminar will focus on the circuits ("topologies") used to convert power. The various building blocks, such a switching devices and inductors will be described. Then the key principle of switch mode power will be presented to show how an ideal switch mode converter can convert at 100% efficiency. This introduces the buck converter which is explored in some detail. The workings of other key topologies such as the boost, buck-boost, flyback, and SEPIC converter are also shown to expand the understanding.

In the second half, the basics of controlling a switch mode power converter are explained. A quick review of systems and feedback starts the discussion. Then roles and function of the error amplifier, compensator, and modulator described. The concepts of how one designs a stable control are also discussed. The seminar concludes with an overview of current mode control.

122

This seminar is suited for those wishing to know how a switch mode power converter works without being drenched in technical details, such as those new to switch mode power conversion or those working in sales, marketing, or application support of switch power converters or components used in switch mode power converters.

Session One, Track 2 (S02)

Modern Soft Switching Technologies

Ionel Dan Jitaru ROOM 206

Prof. Education Seminars

9:30 a.m.- 1:00 p.m.

This seminar will present modern soft switching technologies as an avenue to increase the efficiency and power density in power conversion.

The modern soft switching technologies which will be presented in the seminar do provide true soft switching. In true soft switching technology, the primary switching devices turn on at zero voltage and the secondary switching devices turn off at zero current. There is no ringing or spikes across any of the switching devices during operation. These technologies are a derivation of the classical topologies, such as flyback, boost, two transistors forward, half bridge and full bridge.

Though the seminar will be focused on the modern soft switching technologies, a section is dedicated to magnetics. In the quest for efficiency above 99%, the magnetic technology plays a very important role. In spite of the significant progress in the semiconductor industry, the technology in magnetics lags behind.

The developments in semiconductor technology such as GaN and SiC did help us to further improve the efficiency exceeding the 99% in some applications.

The presentation will be highlighted with design examples and experimental results such as 99%+ efficiency PFC with power densities above 1000W/in3, and 99% efficiency isolated DC-DC Converters.

Session One, Track 3 (S03)

Thermal and Reliability Modeling of Power Electronics Systems

Frede Blaabjerg, Francesco lannuzzo, Amir Sajjad ROOM 217A

9:30 a.m.- 1:00 p.m.

Thermal management and reliability are – besides the costs - the most challenging issues in power electronics. Besides, simulation of power electronic systems and devices is a key to achieve design for reliability. In this education seminar, after a review of the basic theory of heat transfer, and loss calculation in a voltage source inverter, different thermal approaches will be discussed including equivalent thermal network calculation, finite element modelling (FEM) and computational fluid dynamics (CFD) simulations. Depending on the application, certain types of cooling are permitted which reach from natural convection to pool boiling as the most efficient cooling technique. The education seminar will address the sources of heat generation in a power electronic system as well as the basics and possibilities of heat exchange. Case studies will show typical applications for several industrial applications. The results are compared to thermal measurements using the IR camera. Lifetime modelling and simulation is also an important stage in a robust and reliable design that is based on the physics-of-failure approach i.e. appropriate models is prerequisite for lifetime simulation. Moreover, the different operational and environmental stresses which are applied during operation have to be considered (mission profiles). Details on failure mechanisms and mission profiles will highlight the correlation between thermal characteristic and reliability. The education seminar will present and discuss the state-of-the-art of thermal and reliability simulation in the field of power electronics. Application of simulation tools to analyze the correlation between thermal impedance and reliability and the impact of cooling technologies will conclude the education seminar.

WBG Switching Circuits: Design, Test, Devices and Applications

Edward Shelton, Dr Patrick R. Palmer, Alan Mantooth, Brian Zahnstecher, Geoff Haynes ROOM 214AB

9:30 a.m.- 1:00 p.m.

The presentation will start with an overview of GaN and SiC transistor structures, the advantages they offer, and the applications and markets they are well suited to. We will then explore the technical benefits offered by WBG switching devices, and the challenges that are faced by engineers using them. It will be explained how these benefits can be achieved with a power circuit, gate-drive and PCB layout that are all optimised for fast switching. Switching test results will be examined and straightforward numerical analysis applied to quantify the issues and arrive at appropriate solutions. The implementations of these circuits will be described in detail and further test results shown to demonstrate their effectiveness. It will be explained that the performance of such an optimised circuit can only be successfully tested and verified using high performance non-intrusive instrumentation systems, such as the embedded measurement circuits that will be presented. The circuit design for a currentsource gate-drive will be presented and compared to a conventional resistive gate-drive. Consideration will be given to reliable operation, improving efficiency and reducing EMI. Finally, experimental test results for GaN, SiC, CoolMOS and IGBT switching devices will be presented, with the merits of each compared.

Session One, Track 5 (S05)

High-Efficiency Single-Phase Inverter Design-VT-FEEC Approach for Google Little Box Challenge

Jason Lai, Lanhua Zhang ROOM 214CD

9:30 a.m.- 1:00 p.m.

Prof. Education Seminars

With fast development of wide bandgap (WBG) semiconductor devices and their promise on superior conducting and switching characteristics, the inverter can be designed with ultrahigh efficiency and power density. In the Google Little Box Challenge, the winning award was given to the one with highest power density. Virginia Tech Future Energy Electronics (VT-FEEC) Center, however, being the advocate for ultrahigh efficiency inverter design for the global environment and energy concern is the only university team that went through all the tests successfully and was placed as the Top-Three Finalist in 2016. Major challenges of the design include how to deal with the low-frequency second harmonic ripples, output filter size minimization, electromagnetic interference, and thermal management. This presentation will discuss how the VT-FEEC team went through device and circuit selection for high-efficiency consideration, the low-frequency suppression for capacitor size reduction, cooling system design approach, and filter design for harmonic and EMI compliance. The resulting design achieved 98.0% CEC weighted efficiency and 69.3 W/in3 power density. The presentation materials involve both technology survey and design aspects and are intended for audience with intermediate knowledge level in power electronics.

Session One, Track 6 (S06)

Power Quality Control in Hybrid AC/DC Microgrids

Yunwei (Ryan) Li, Farzam Nejabatkhah ROOM 217BC

9:30 a.m.- 1:00 p.m.

Today, conventional power systems are evolving into modern smart grids, where interconnected microgrids may dominate the distribution system with high penetration of renewable energies and storage elements. The hybrid AC/DC systems with DC and AC sources/loads are considered to be the most likely future distribution or even transmission structures. In such hybrid AC/DC microgrids, power quality control is one of the most critical operation aspects, and the high penetration level of power electronics interfacing converters creates great potential to control the power quality.

This tutorial focuses on the power quality control in hybrid AC/DC microgrids. It includes both converter level control design and system level management and coordination. It will cover four main topics: i) overview of hybrid AC/DC microgrids and their power quality issues; ii) power management strategies and grid support control in hybrid microgrids; iii) control strategies for single-phase and three-phase interfacing converters to compensate for the unbalanced voltage in hybrid AC/DC microgrids; and iv) harmonic compensation in hybrid microgrids.

The tutorial will be suitable for university researchers who are working on microgrids and grid interfacing converters, as well as industry people who wants to learn more about smart converters controls and hybrid AC/DC microgrids operations.

Electromagnetic Interference and Compatibility for Power Electronics Engineers

Graham Town ROOM 217D

2:30 p.m.- 6:00 p.m.

The increasing use of high speed power electronics in electrical power conversion and control is also increasing the potential for electromagnetic interference (EMI) with the operation of other electronic equipment. EMI is often difficult to diagnose yet can have potentially serious consequences, especially for wireless systems used for sensing, communication and control (e.g. as in "smart grids"). Consequently it is important for power electronics engineers to understand how and why EMI occurs and methods for minimizing its impact.

This seminar will explain the various sources and characteristics of electromagnetic interference (EMI) generated by power electronic circuits, the physical mechanisms by which those sources may interfere with the operation of electronic equipment, and practical techniques for limiting the interference and/ or its impact on other electronic circuits, i.e. to improve electromagnetic compatibility (EMC).

Topics covered will include: sources of EMI (electronic switching, electrical transients, etc.) characteristics of EMI (temporal and spectral properties, etc.), fundamental coupling mechanisms (conducted, inducted, radiated), EMI standards and measurements, testing for electromagnetic compatibility (EMC), and practical strategies and methods to minimize EMI and/or its impact.

Intended audience: Design engineers and researchers with experience in circuit design linking electromagnetic theory with practice in the context of power electronics.

Session Two, Track 8 (S08)

New High-Frequency Magnetics Circuit Models

Ray Ridley ROOM 214CD

Prof. Education Seminars

2:30 p.m.- 6:00 p.m.

This seminar will present latest research results for highfrequency magnetics modeling and analysis. It will cover both fundamentals and advanced concepts of rugged transformer and inductor design. Topics will include core loss, winding loss, saturation, frequency response measurements, circuit modeling, leakage inductance, winding layout arrangements, and materials. The usually-difficult topics of proximity loss and core loss will be greatly simplified with new circuit models that make results accessible to all designers or users of standard magnetics parts. Equations for the derivation of circuit elements and design examples will be given.

The course is recommended to all levels of engineers who work with switching power supplies at power levels from less than 1 W to 100 kW.

Session Two, Track 9 (S09)

Advanced Thermal Management Technologies

Peter Ritt, Devin Pellicone ROOM 217A

2:30 p.m.- 6:00 p.m.

The course will provide an in-depth explanation of the principles of several advanced thermal technologies. Essential heat transfer equations and correlations will be presented and explained for each of these thermal management technologies. Additionally real world applications where these technologies are implemented will be discussed in detail. The participant will come away with an understanding and appreciation of thermal management technologies, how they work, when they should be applied and how they can improve component and system level design performance.

Session Two, Track 10 (S10)

Designing Reliable and High Density Power Supplies with GaN

Paul L. Brohlin, Masoud Beheshti, Sandeep Bahl, Serkan Dusmez, Ted Chen ROOM 214AB

2:30 p.m.- 6:00 p.m.

Gallium Nitride (GaN) is enabling a new generation of power conversion designs not possible before. These designs allow systems to reach unprecedented levels of power density and efficiency while delivering the reliability and the ruggedness that the power supply engineers expect. This presentation provide a technical overview of GaN technology, how it is qualified for reliable operation in power applications, and an in depth discussion of designing for high density in various topologies such high frequency LLC converters, power factor correction, and active clamp Flyback. The overview is intended to help both novice and seasoned power designers to gain deeper insight into GaN reliability, high frequency design techniques, component selections, and how to optimize the density, efficiency, and reliability of a power supply design.

Power Semiconductors for Traction Inverters in Vehicles: from Discretes to Power Modules, from Silicon to Wide Band Gap Devices

Andre Christmann, David Levett, ROOM 206

This seminar will provide an overview of the use of power semiconductors in vehicle traction inverter applications. It will cover four major aspects of three-phase inverters for DC-AC power conversion in HEVs, PHEVs, and EVs: Semiconductor packaging; Performance assessment of different families of semiconductors: IGBTs. MOSFETs and SiC: Inverter design principles for high efficiency; Integration of different package types into an Inverter. IGBTs (Insulated Gate Bipolar Transistors) are at the heart of most modern traction inverters and perform the electronic switching functions. They are assembled in different kinds of packages, mounted onto cooling structures and connected via bus bars to a capacitor bank. A fully functional inverter stack compromises of these components integrated together with other subassemblies, such as control boards, filters and current sensors. Although the market for electrical and hybrid cars cannot be described as an emerging market, the typical standardization of automotive components has not yet occurred for high power inverters. Nevertheless the physics for driving an electrical motor are the same for all the different vehicles. The seminar will connect various aspects of inverter design from the view point of power semiconductors: Packaging, thermal and electrical performance and the integration into an inverter.

Session Two, Track 12 (S12)

Power Converters for Energy Storage Applications-Analysis and design from Theory to Practice

Petar Grbovic ROOM 217BC

2:30 p.m.- 6:00 p.m.

Power electronics and static power converters play significant role in industrial applications, power generation and transmission, home appliance, transportation, etc., etc. In most of the applications above mentioned, we are facing higher and higher demand for an energy storage device. Several different energy storage technologies are available today: flywheel, electrochemical double layer capacitors (EDLC), fuel-cells (FC) and electrochemical batteries. An energy storage cannot be directly connected to the power conversion system. An interface ac/dc or dc/dc power converter between the energy storage and the system is also required.

In the first part of the seminar we will discuss state of the art energy storage devices, their applications, design and sizing. In the second part of the seminar, we will discuss in deep details interface power converters such as dc/dc and ac/dc converters. The discussion will cover different topologies such as voltage and current source converters, multi-cell and multi-level converters, isolated and non-isolated converters, full and partial power rated converters, etc., etc. Control strategy of different concepts will be covered too. Several case studies and design examples will be given as concluding part of the seminar.

This seminar is aimed at power electronics engineers, professionals and graduate students who want to improve their knowledge and understanding of advanced energy storage devices, interface converters and their application in power conversion, nowadays as well as in the near future. **Prof. Education Seminars**

Monday, March 5

8:30 a.m. - 12:00 p.m.

Session Three, Track 13 (S13)

Gate Driver Design for IGBT and SiC Based Power Devices and Modules

David Levett, Tim Frank, David Divins ROOM 217BC

8:30 a.m.- 12:00 p.m.

The goal of this seminar is to provide a very practical course on how to design gate drivers for both IGBT and SiC MOSFET power semiconductors. The seminar will be given by design engineers, with more than 50 years of combined real world design experience, for design engineers with the aim of benefiting anyone involved in power converter design from entry level to veteran.

Subjects to be covered include: comparison of gate driver requirements and measured waveforms from an equal rated IGBT and SiC MOSFET. Explanation of different gate driver isolation types from junction isolated, through opto couplers to fiber optics and the application benefits of each. How to design floating isolated power supplies from bootstrap to full galvanic isolation and the important design parameters for high dv/dt switching. Key elements required to protect IGBT's and SiC MOSFETs under over-current, short circuit and over-voltage conditions. Finally some examples and tips on how to do pcb layout especially for fast switching and paralleled devices.

The seminar will be most relevant to engineers designing converters in the 1kW to 10MW power range and will emphasize designs utilizing power modules using IGBT's and SiC MOSFET semiconductors in the 650V, 1200V and 1700V voltage classes.

Session Three, Track 14 (S14)

Closing the Feedback Loop Through Simulation and Analysis

Christophe Basso ROOM 214CD

Prof. Education Seminars

8:30 a.m.- 12:00 p.m.

Loop control represents an important part of power converters design. However, among the long list of things to consider when developing a new product, it is often ignored until the very end of the design process. Attempting to stabilize a converter in emergency without a thorough understanding of its operating mechanisms can be a perilous exercise when trial and error is involved. Despite the power of nowadays simulation engines, nothing replaces the thorough analytical analysis of a control loop to identify where the offenders are and how to neutralize them via an adequate compensation policy.

Capitalizing on the author experience in this field, the seminar describes several paths to let you efficiently stabilize a converter through the combination of analytical analysis, simulation and bench experiments. The seminar starts by introducing the tools we need –small-signal models, fast analytical circuits techniques (FACTs) and simulation models – and quickly dive into the subject through application examples. At the end of this seminar, you will know the basic steps for stabilizing a typical switching converter.

Using mathematical analysis and different tools such as SPICE and Mathcad[®], the author maintains a permanent link between theory and practical reality. Balancing analytical aspects and real-case examples, the seminar targets an audience with an intermediate background in the presented subject.

Session Three, Track 15 (S15)

International Product Compliance and Certifications-Safety and EMC Compliance 101

John Allen, Mark Montrose, Jeff Pasternak ROOM 206

8:30 a.m.- 12:00 p.m.

This tutorial is for those new to EMC and Safety compliance which allows one to implement both safety and EMC requirements at an introductory level.

For the safety portion, we start with a brief history and the international approval process. We examine how to obtain the CE mark for Europe along with creating Technical Files, use of Notified Bodies plus related international regulations and Directives including how to create a Declaration of Conformity. In addition, we present briefly major areas of concern with regard to risk hazard analysis with a focus on power electronics that includes construction requirements, tests required, warnings labels plus appropriate standards.

For the EMC section, this introductory tutorial presents in unique manner the field of electromagnetic compatibility made simple with a focus on the design of printed circuit boards and systems to meets any emissions and immunity requirement. The target audience is everyone regardless of expertise wishing to [re-]learn electromagnetic theory in a non-academic manner "without the math". A visualization approach is taken that allows attendees to understand what Maxwell's equations tells us, converting his four equations conceptually into five simple algebraic equations to solve almost any EMC problem in minutes using only a calculator.

Maximizing GaN FET and IC Performance, Not Just a Drop in Replacement of MOSFETs

Michael de Rooij, Alex Lidow, David Reusch, John Glaser ROOM 214AB

8:30 a.m.- 12:00 p.m.

Gallium Nitride (GaN) power semiconductors have seen increased adoption in many power electronic applications. The performance of GaN FETs continues to evolve and improve but the challenges of maximizing the GaN Benefit increases too. The goal of this tutorial is to provide engineers the tools and understanding needed to fully utilize the potential of GaN FETs and emerging GaN integrated circuits, and to teach them that GaN devices are not merely a drop in replacement for MOSFETs. The seminar comprises three main sections; 1) An introduction to the important distinguishing characteristics of GaN FETs, 2) The fundamentals of designing with GaN FETs and ICs, and 3) GaN based application examples demonstrating the techniques presented in section II.

Session Three, Track 17 (S17)

Optimizing Power Converter Topology and Module Selection in 1500V Solar Inverters

Kevork Haddad, Bernhard Eichler, Paul Drexhage ROOM 217A

8:30 a.m.- 12:00 p.m.

1500VDC is set to be the mainstream in PV based power plants. Increasing the maximum DC voltage poses significant challenges to the Engineer who is tasked to design the solar inverter having DC link voltages higher than 1000V. The following aspects during the design phase need to be answered concretely: what topology to be used two level or three level converter? Which topology is the optimum topology? What kind of design margin gives one particular solution vs another? What is the robustness of the design in terms of cosmic ray failure?.

The objective of the tutorial is to give the practicing Engineer step by step approach how to reach to the optimum solution by using industry standard topologies and modules. The course will demonstrate and explain how to include mission profile to account for cosmic ray failures which impacts the final solution. Module technologies suitable for 1500V PV string and central inverters are presented. Semiconductor losses calculations for various solutions are described with concrete examples. An in-depth discussion of the role of cosmic radiation on semiconductors in regards to failure rates is planned with practical examples. The course takes into consideration large central inverters for high power solar installations. Hence, parallelization of standard and three level modules are treated with practical examples. Importance and the 2/5 design aspects of such as sizing of filter components and DC link capacitors will be discussed as well.

Session Three, Track 18 (S18)

Small-Signal Stability and Subsystem Interactions in Distributed Power Systems with Multiple Converters (II): 3-Phase AC Systems

Jinjun Liu, Rolando Burgos, Paolo Mattavelli, Dushan Borojevich ROOM 217D

8:30 a.m.- 12:00 p.m.

One of the major developing trends of distributed power systems, no matter in stand-alone form or in public grid form, is that more and more electronic power converters are adopted for the purpose of power conditioning or performance improving. This will lead to guite a few technical challenges, one of them being the system small-signal stability issue, which is caused by the dynamic interactions among subsystems/converters and is guite different from the stability issue with conventional power grids. It turns out that the impedance-based approach is an appropriate analytical approach for such stability issue. An in-depth review of existing and recent work of impedancebased approach for 3-phase AC systems is delivered. Topics that will be covered include a brief review of small-signal stability and sub system interactions in dc systems. DQ impedances of three-phase AC system, small-signal stability analysis using Generalized Nyquist Criterion, dynamics caused by Phase-Locked-Loop (PLL), stability criterion of droop-controlled parallel inverters considering dynamics of fundamental frequency, stability analysis for 3-phase systems based on single impedance model, and impedance measurement and practical implementations. The targeting audience of the seminar/tutorial would be engineers, graduate students and academia faculties who are interested in the topic. The level of the intended audience will be intermediate.

Plenary Session

as of 2 15 18

Monday, March 5

1:15 p.m. – 5:00 p.m. HEMISEAIR BALLBOOM C1/C2

The APEC 2018 Plenary Session is designed to cover the history of power, the current needs in energy efficiency and the future possibilities. The plenary is made up of several presentations from respected industry leaders. Each presentation is 30 minutes in length and allows for interactive Q&A at the end of each presentation.

Power: A Fundamental Ingredient of Advanced Science and Applied Technology

1:30 p.m. – 2:00 p.m.

SPEAKER:

Adam L. Hamilton P.F. President and Chief Executive Officer. Southwest Research Institute (SwRI[®])

T3 days ago

Imagine a sophisticated and expensive scientific instrument package that must function flawlessly and never be serviced during its one-way mis-

sion. Years of research, development, and planning depend on embedded power components to conduct the furthest exploration in the history of humankind. The New Horizons spacecraft left Earth in 2006, sped perilously close to Pluto in 2015, and promises another scientific bounty in 2019 with the flyby of 2014-MU69, an object outside of our solar system. Next, imagine the interconnected infrastructure of a smart transportation system dependent on a trickle of power to predict and prevent catastrophic accidents. Humankind's insatiable scientific and engineering curiosity, and its continuing advancement, will always require power. Join us during this plenary session as we consider the enabling power of power for the future of science and technology.

VIENNA Rectifier and Bevond

2:00 p.m. - 2:30 p.m.

SPEAKER:

Dr. Johann Kolar Director Power Electronic Systems Laboratory, ETH Zurich

Twenty years ago at the Plenary Session of APEC 1998 in Anaheim, CA, a single-stage isolated three-phase PWM rectifier system was introduced. Since then the Vienna Rectifier has been

proven to fit well for today's applications. With newer and wider range of power semiconductor devices and updated system requirements, topological variations in today's uses and what's in store in research for the future trends will be discussed.

Moving from Si to SiC from the **End User's Perspective**

2:30 p.m. – 3:00 p.m.

SPEAKER: Dr. Muhammad Nawaz Principal Scientist, ABB Corporate Research

Ever increasing demand of energy supply as a result of continuous population growth, human mobility leading to more urbanization and widening industrialization scope with lower environmental

impact is the basic challenge that power electronics community is facing nowadays for sustainable societal growth. While electricity consumption is continuously growing at a fast rate over the coming decade, combating the energy demand and climatic problem therefore requires a more complex interdisciplinary approach involving new technological solutions such as sustainable energy sources and more efficient energy usage. With these considerations in mind, an enabling technology that provides an efficient energy conversion and distribution, reliable control and conditioning of electric energy from the source to the load end will be the main objective of futuristic research and development. High power Semiconductor devices such as MOSFETs. IGBTs and IGCTs provide basic building blocks for variety of high power conversion applications. As witnessed by recent device technological trend, wide bandgap electronic devices using silicon carbide (SiC) material system promise potential replacement to leading horse silicon based devices: thanks to larger bandgap of SiC (3 times than that of Si), higher critical field strength (10 time than that of Si) along with higher thermal conductivity of SiC (3 times than that of Si) besides superior transport of carriers (2 times higher saturation velocity than that of Si).

Plenary Sessior

Break

3:00 p.m. – 3:30 p.m.

WPT: from µW/cm2 Harvesting to kW Capacitive Vehicle Powering

3:30 p.m. – 4:00 p.m.

SPEAKERS: Zoya Popovic

Distinguished Professor and Lockheed Martin Endowed Chair, Electrical, Computer and Energy Engineering, University of Colorado, Boulder

This talk will overview wireless power transfer for power levels from W to kW. The ultra-low power density applica-

tion is in far-field harvesting at GHz frequencies for unattended wireless sensors. In this case, efficiency and power management are challenging, as well as miniaturization and energy storage. Several examples will be shown, including harvesting sidelobes from a 4.3GHz altimeter radar antenna on a Boeing 737 aircraft for powering health-monitoring aircraft sensors. At the high power levels, near-field capacitive power transfer is chosen in the 6 MHz range for powering stationary vehicles and vehicles in motion. In this case, over 85% efficiency is achieved for 1kW of capacitive power transfer while meeting safety standards in the vicinity of the vehicle through a near-field phased array approach. Other approaches, such as power beaming and multi-mode shielded wireless powering will also be discussed.

3D Power Packaging made Real with Embedded Component and Substrate Technologies

4:00 p.m. – 4:30 p.m.

Plenary Sessior

SPEAKER:

Dr. P. Markondeya Raj Associate Research Director, Georgia Tech – PRC

Future electronic systems require new strategies for power module integration, much beyond discrete and twodimensional packaging that has been prevalent for decades. Packaging will

add dramatic value in supplying power to high-performance devices and systems by addressing the barriers to better and cheaper components and their heterogeneous integration as 3D power packages. Power Sources Manufacturers Association (PSMA) is releasing its extensive industry report this year, compiling these latest industry advances with improved passive component designs, nanostructured materials and innovative process integration that benefits from such materials.

Does Power Efficiency Improve with Consolidation in the Semiconductor Industry?

4:30 p.m. – 5:00 p.m.

SPEAKER: Hans Stork

Senior Vice President and Chief Technology Officer, ON Semiconductor

Recently, the semiconductor industry has been rapidly consolidating for financial, operational, pricing and market-share reasons. Having fewer and larger businesses may actually accel-

erate the broad acceptance and commercialization of innovative technologies like wide bandgap power devices. Although many concepts for smaller and more efficient power management have been demonstrated by research and startup companies, the realization of full-scale adoption, ranging from household adaptors to automobiles and to data center management, requires significant resources to meet demands for global supply and quality. Large enterprises have the manufacturing and supply chain infrastructure, as well as the depth in R&D knowledge. This talk will provide an overview of the progress, in cost andperformance, of both silicon and wide bandgap materials, devices, circuits and applications, highlighting both technical and commercial challenges.

Rap Sessions

as of 2.15.18

Tuesday, March 6

5:00 p.m. – 6:30 p.m.

R01: Biggest Impact on Power Conversion-Devices or Magnetics?

HEMISFAIR BALLROOM C1

MODERATOR:

Kevin Parmenter, Excelsys: Ray Ridley, Ridley Engineering

SPEAKERS:

Rap Sessions

- > Ray Ridley, *Ridley Engineering*
- > Jim Marinos, *Payton America*
- > Dan Kinzer, Navitas
- > Manfred Schlenk, Infineon
- > Ira Pitel, Magna-Power Electronics
- > Dan Jitaru, RomPower

New power electronics architectures and converter designs are usually proposed in order to reduce the cost, weight, and volume of the power electronic converters while adding more functionalities and improving efficiency. With the recent advancements in wide bandgap power electronic semiconductor device technologies, it is possible to operate at higher switching frequencies, lower switching losses, higher voltages, and at higher temperatures than the conventional silicon semiconductor devices. However, it is obvious that wide bandgap semiconductor technology has more room for improvement in terms of cost, reliability and robustness, and the current rating for better power converters. On the other hand, magnetics technologies experienced some improvements with the advancements in materials technology, new geometric designs with the high performance computing, and even 3-D printing technologies for the magnetic composites for more effective shapes and geometries. This rap session will discuss the impact of magnetics and devices in power electronics inventions and future opportunities, possibilities, challenges, and limitations that our industry may experience. This session will provide an insight if we need to advance device technologies or if we need to invest more on the magnetic structures in order to achieve the ideal power converter. Come and participate in the debate with industry experts as to which makes the most difference in power converter efficiency; the semiconductor devices or the magnetics materials and design.

R02: Gate Drive Isolation Technologies: Optical, Ganetic, or Capacitive Coupling?

HEMISFAIR BALLROOM C2

MODERATOR:

Aung Tu, Industrial Gate Drivers, Infineon

SPEAKERS:

- > Baoxing Chen, Analog Devices
- > Laszlo Balogh, ON Semiconductor
- > Tom Bonifield, Texas Instruments
- > Wolfgan Frean, Infineon Technology
- > Keith Coffey, Silicon Labs

Today's isolated gate drive ICs switches discrete IGBTs, power MOSFETs and high-voltage power modules for many applications such as industrial drives, solar inverters, UPS, and EV chargers. Performance expectations from include delay matching, high reliability, strong robustness, and design flexibility. An isolated gate drive should isolate the gate signals with high robustness regardless of the common-mode noise, it should provide stable operation under high dV/dt noises, and it should have tight propagation delay matching that does not vary with the age, temperature, and operating conditions. An ideal gate driver should also provide some design flexibility with the ability of operating at wide range of gate voltages for different devices including the negative gate voltage while being capable of operating at relatively higher switching frequencies for new SiC and GaN power devices. It should also include protection features such as desaturation detection or short-circuit protection. It should utilize precise integrated filters for reduced propagation delay with minimal variation over a broad range of operating points for minimal dead time. This rap session will discuss the advantages, drawbacks, performance, integration flexibility, cost, and design complexity of different gate drive isolation technologies. Which is the best approach: magnetic, capacitive or optical isolation? Come debate it with the industry experts in the field.

R03: GaN vs. SiC vs SI for Next Generation Power Devices

HEMISFAIR BALLROOM C3

MODERATOR:

Indumini Ranmuthu, Texas Instruments

SPEAKERS:

- > John Palmour, Wolfspeed (CREE)
- > Paul Bohlin, Texas Instruments
- > Gerald DeoBoy, Infineon
- > Chingchi Chen, Ford Research Labs
- > Alex Huang, University of Texas at Austin

Consumer, industrial, and automotive applications require lighter weight, smaller size, and more efficient power electronic converters with higher temperature operation capability and reduced requirements for thermal management systems. After staying at research level applications for many years, wide bandgap power electronic devices such as silicon carbide (SiC) and gallium nitride (GaN) are taking more roles in the commercial power electronic converters thanks to their fast turn-on and turn-off times, ultra-fast recovery times, higher efficiency, and higher temperature operation capabilities. Also there are efforts made by the by the manufacturers and early industry users to address reliability, cost, and maturity issues. On the other hand, conventional silicon-based devices never stay where they are and their performances, operating limits, and high temperature capabilities continuously improve while they are still dominating the larger portion of the market. Given this is GaN and SiC better than silicon or will silicon continue to dominate? Where, when and under what conditions GaN and SiC will dominate? What issues need to be resolved for them to dominate? What is the state of the art, requirements, and issues of next generation power devices? Come discuss debate and get your questions answered from a panel of experts on GaN. SiC and Silicon power devices.

142

APEC. 2+18 CONFERENCE AND EXPOSITION

Notes

Dialogue Session

as of 2.15.18

Dialogue Session papers have been selected through the same rigorous peer review process as papers in the oral technical sessions. They are represented by papers in the APEC Proceedings.

In the Dialogue Session you will have the opportunity to talk at length with the authors about their work, something that is not possible in the oral technical sessions.

Thursday, March 8

11:30 a.m. – 2:00 p.m. HEMISFAIR BALLROOM

D01: AC-DC Converters

AC-DC Converters

CHAIRS:

Davide Giacomini, *Infineon Technologies* John Lam, *York University*

- D01.1: Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers Chushan Li³, Jintao Lei³, Qingxin Guan¹, Yu Zhang¹, Shuai Wang², David Xu² ¹Huazhong University of Science and Technology, China; ²Ryerson University, Canada; ³Zhejiang University, China
- D01.2: Implementation and Performance Evaluation of 100- kHz, Soft-Switched Bidirectional PFC/Inverter with Silicon MOSFETs Brian Irving, Yungtaek Jang, Milan Jovanović

Delta Products Corp, United States

- D01.3: Duty Compensated Reduced Harmonic Control for a Single-Phase H-Bridge PFC Converter Arun Sankar, Ayan Mallik, Alireza Khaligh UNIVERSITY OF MARYLAND, United States
- D01.4: A Mathematical Guideline for Designing an AC-DC LLC Converter with PFC Yajie Qiu¹, Wenbo Liu², Peng Fang², Yan-Fei Liu², Paresh C. Sen² ¹GaN Systems, Canada; ²Queen's University at Kingston, Canada
- D01.5: Optimum Harmonics Injection to Minimize Bus Capacitance of CRM Boost PFC Conveters Meeting EN61000-3-2 Class D Limits

Zhehui Guo, Xiaoyong Ren, Yu Wu, Lei Bai, Zhiliang Zhang, Qianhong Chen Nanjing University of Aeronautics and Astronautics, China D01.6: Three-Phase Single-Stage Three-Level AC/DC Converter with a Wide Output Voltage Control Range

Eunsoo Kim, Yechang Heo, Takongmo Marius, Jicheol Lee *Jeonju University, Korea*

- D01.7: Performance Evaluation of a Single-Phase Three-Port Boost-Rectifier-Based PFC Converter with Stacked/Sigma Configuration for Higher Voltage Step-Up Application Hongfei Wu, Meng Han, Yihang Jia, Yan Xing Nanjing University of Aeronautics and Astronautics, China
- D01.8: A High Frequency Power Factor Correction Converter with Soft Switching Alex Hanson, David Perreault Massachusetts Institute of Technology (MIT), United States
- D01.9: A Single-Phase Single-Stage AC-DC Stacked Flyback Converter with Active Clamp ZVS Yuntong Li, Gerry Moschopoulos University of Western Ontario, Canada
- D01.10: A Simple ZVT Auxiliary Circuit for Full-Bridge Based Bridgeless Single-Phase PFC with Hybrid PWM Modulation Scheme Ziwei Yu, Yinglai Xia, Raja Ayyanar Arizona State University, United States
- D01.11: Optimized Hybrid PWM Scheme for Mitigating Zero-Crossing Distortion in Totem-Pole Bridgeless PFC Wing To Fan, Shun Cheung Yeung, Shu Hung Chung City University of Hong Kong, Hong Kong
- D01.12: Primary-Side Feedback Control IC Design for Flyback Converter with Energy Saving Burst Mode Chun-Yu Huang¹, Tsorng-Juu Liang², Kai-Hui Chen¹, Cheng-Yuan Li¹ ¹National Cheng Kung University, Taiwan; ²National Cheng Kung University, Taiwan
- D01.13: Single Phase Universal Input PFC Converter Operating at HF

Juan Santiago-Gonzalez², David Otten², Seungbum Lim², Khurram Afridi¹, David Perreault² ¹*CU Boulder, United States;* ²*MIT, United States*

- D01.14: Line Power Extension Method for Capacitor Reduction for AC-DC Application Yang Chen², Hongliang Wang², Yan-Fei Liu², Sucheng Liu¹ ¹Anhui University of Technology, China; ²Queen's University, Canada
- D01.15: Improved Analysis, Design and Control for Interleaved Dual-Phase ZVS GaN-Based Totem-Pole PFC Rectifier with Coupled Inductor Qingyun Huang², Qingxuan Ma², Ruiyang Yu², Tianxiang Chen², Alex Huang², Zhuoran Liu¹ ¹University of Chinese Academy of Sciences, China; ²University of Texas at Austin, United States

D01.16: Third Harmonic Compensation in Bridgeless Current Sensorless PFC

Felipe Lopez¹, Francisco Javier Azcondo¹, Luca Corradini², Paula Lamo¹, Alberto Pigazo¹ ¹University of Cantabria, Spain; ²University of Padova, Italy

.

D02: Miscellaneous Topics in DC-DC Converters I

DC-DC Converters

Chenhao Nan, Google

Robert Pilawa, UC Berkeley

D02.1: A Digital Detecting Method for Synchronous Rectification Based on Dual-Verification for LLC Resonant Converter

Qinsong Qian¹, Shen Xu¹, Juzheng Yu¹, Weifeng Sun¹, Haisong Li²

¹National ASIC System Engineering Research Center, Southeast University, China; ²Wuxi Chipown Microelectronics limited, China

D02.2: Flyback Converter with Hybrid Clamp

Laszlo Huber³, Milan JovanoviÄ^{‡3}, Haibin Song², Daofei Xu², Alpha Zhang², Chien-Chung Chang¹ ¹Delta Electronics Inc., Taiwan; ²Delta Electronics Shanghai, China; ³Delta Products Corp., United States

D02.3: Integrated Switched-Capacitor-Based Cold-Start Circuit for DC-DC Energy Harvesters with Wide Input/Output Voltage Range and Low Inductance in 40-nm CMOS

David King Li², Mojtaba Ashourloo², Matthias Rose¹, Henkjan Bergveld¹, Olivier Trescases² ¹NXP semiconductors, Netherlands; ²University of Toronto, Canada

D02.4: Integrated Magnetics Design for a Full-Bridge Phase-Shifted Converter

Yu-Chen Liu¹, Chen Chen², Shu-Yi Lin², Cheng-You Xiao², Katherine Kim³, Yao-Ching Hsieh², Huang-Jen Chiu² ¹National IIan University, Taiwan; ²National Taiwan University of Science and Technology, Taiwan; ³Ulsan National Institute of Science and Technology, Korea

D02.5: LLC Resonant Converter with Wide Output Voltage Control Characteristics According to Operating Mode Transition

Eunsoo Kim², Jicheol Lee², Yechang Heo¹, Takongmo Marius², Jongseong Ju², Yoonsang Kook³ ¹Jeonju Uinversity, Korea; ²Jeonju University, Korea; ³PACTECH Co., LTD, Korea

D02.6: LLC Resonant Converter with Wide Output Voltage Control Ranges Operating at a Constant Switching Frequency

Eunsoo Kim², Jicheol Lee², Yechang Heo¹, Takongmo Marius² ¹Jeonju Uinversity, Korea; ²Jeonju University, Korea

D02.7: An Improved Analysis Method of Loss for the LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter

Bo Chen, Yifeng Wang, Ping Wang, Wei Li, Fuqiang Han, Liang Yang *TianJin University. China*

D02.8: A Study of Multilevel Resonant DC-DC Converters for Conventional DC Voltage Bus Applications Javad Khodabakhsh, Gerry Moschopoulos *Western University, Canada*

D02.9: Light-Load Efficiency Improvement for LLC Converter with Synchronous Rectification in Solid-State Transformer Application Chih-Shen Yeh², Lanhua Zhang¹, Jung-Muk Choe², Cheng-Wei Chen², Oscar Yu², Jih-Sheng Lai² ¹Texas Instruments, United States; ²Virginia Tech, United States

D02.10: Hybrid Buck Converter Optimization and Comparison for Smart Phone Integrated Battery Chargers Gabriel Gabian, Jordan Gamble, Benjamin Blalock,

Daniel Costinett University of Tennessee, United States

D02.11: Design of an All-GaN Bidirectional DC-DC Converter for Medium Voltage DC Ship Power Systems Using Series-Stacked GaN Modules Mehdi Shojaie, Nour Elsayad, Osama Mohammed Florida International University, United States

D02.12: Ceramic Capacitor Controlled Resonant LLC Converters

Ido Kolberg², Doron Shmilovitz², Shmuel Ben-Yaakov¹ ¹Ben Gurion University, Israel; ²Tel-Aviv University, Israel

- D02.13: Comparative Analysis of Two Compact and Highly Efficient Resonant Switched Capacitor Converters Miroslav Vasić², Diego Serrano², Jesús A. Angel Oliver², Pedro Alou², Petar Grbović¹, José A. Antonio Cobos² ¹Huawei Smart Energy Innovation Center, Spain; ²Universidad Politecnica de Madrid, Spain
- D02.14: Zero Inductor Voltage Multilevel Bus Converter Samuel Webb, Tianshu Liu, Yan-Fei Liu Queen's University, Canada
- D02.15: A General Multi-Phase Coupled-Resonant-Tank Resonant Converter Hongliang Wang, Yang Chen, Yan-Fei Liu, P.C Sen Queen's University, Canada
- D02.16: System Optimization of a High Power Density Non-Isolated Intermediate Bus Converter for 48 V Server Applications David Reusch, Suvankar Biswas, Yuanzhe Zhang

Efficient Power Conversion (EPC), United States

D02.17: A Current-Fed DC-DC Converter Using Two Transformers with Reducing Current Ripple and Wide Input Range Deshang Sha, Ke Liu, Xiao Wang Beijing Institute of Technology, China

Dialogue Sessions

D03: Miscellaneous Topics in DC-DC Converters II

DC-DC Converters

Abhijit Pathak, Infineon

- D03.1: Duty Phase Shift Technique for Extended-Duty-Ratio Boost Converter for Reducing Device Voltage Stress Over Wider Operating Range Jinia Roy, Raja Ayyanar Arizona State University. United States
- D03.2: Modeling and Dynamics Investigation of an Active-Clamp Buck Converter Ziwei Yu¹, Chenhao Nan², Raja Ayyanar¹ ¹Arizona State University, United States; ²Google, United States
- D03.3: Real-Time Adaptive Timing Control of Synchronous Rectifiers in High Frequency GaN LLC Converter Zhuoran Liu¹, Ruiyang Yu², Tianxiang Chen², Qingyun Huang², Alex Q. Huang² ¹Institute of Electrical Engineering, Chinese Academy of Sciences, China; ²The University of Texas at Austin, United States
- D03.4: A Multi-Channel LED Driver with Selective Dimming

Ye Cikai², Pritam Das¹, Sahoo Sanjib Kumar², Majid Pahlevaninezhad³ ¹ECE, Binghamton University, United States; ²National University of Singapore, Singapore; ³University of Calgary, Canada

D03.5: An Improved Analysis of dv/dt-Induced Low-Side MOSFET False Turn on in Synchronous Buck Converters

Ruqi Li¹, Joyce Zhu¹, Manjing Xie² ¹Cisco, Inc., United States; ²Texas Instruments, Inc., United States

- D03.6: 60 V-to-35 kV Input-Parallel Output-Series DC-DC Converter Using Multi-Level Class-DE Rectifiers Sanghyeon Park, Lei Gu, Juan Rivas-Davila Stanford University, United States
- D03.7: Modelling the Performance of a SiC-Based Synchronous Boost Converter Using Different Conduction Modes

Maria Rodriguez Rogina, Alberto Rodriguez, Aitor Vazquez, Diego G. Lamar, Marta M. Hernando *University of Oviedo, Spain*

D03.8: A Helical Air-Core Transformer with Even Current Distribution for VHF Converters

Dialogue Sessions

Jiahua Xu², Zhiliang Zhang², Xinlu Chen¹, Ke Xu², Zhou Dong², Xiaoyong Ren² ¹Beijing Century Goldray Semiconductor Co., Ltd., China; ²Nanjing University of Aeronautics and Astronautics, China

D03.9: Air-Core Transformer Integration for GaN VHF Converters

Ke Xu², Zhiliang Zhang², Zhi-Wei Xu², Jiahua Xu², Xiaoyong Ren², Qianhong Chen², Fengbing Yu¹ ¹Mornsun Company, China; ²Nanjing University of Aeronautics and Astronautics, China

D03.10: Discrete-Time Framework for Digital Control Design in a High-Frequency Dual Active Bridge Converter

Avishek Pal², Santanu Kapat², Kapil Jha¹, Arvind Tiwari¹ ¹GE Global Research, India; ²IIT Kharagpur, India

D03.11: A Self-Bias Supply Scheme for the Control Circuit in Power Converter Lijuan Shen², Junjun Zhang¹, Junming Zhang², Shuai Shao²

¹Fudan University,State Key Laboratory of Operation and Control of Renewable Energy & Storage, China; ²Zhejiang University, China

D03.12: Analysis, Design and Control of a Resonant Forward-Flyback Converter

Chao Quan¹, Yuchuan Geng², Qianhong Chen², Ming Xu¹, Julu Sun¹ ¹FSP-Powerland, China; ²Nanjing University of Aeronautics & Astronautics, China

D03.13: A Sliding Mode Duty-Ratio Control with Current Balancing Algorithm for Interleaved Buck Converters

Mohammad Hazzaz Mahmud², Yue Zhao², Yuzhi Zhang¹ ¹ABB US Corporate Research Center, United States; ²University of Arkansas, United States

D03.14: Optimal Design of Multi-Winding Planar Transformers in 1 MHz GaN Multiple-Output Forward Converters

Dongdong Hu², Dongdong Ye¹, Zhiliang Zhang², Binghui He², Xiaoyong Ren² ¹Beijing Institute of Control Engineering, China; ²Nanjing University of Aeronautics and Astronautics, China

D03.15: A SiC-Based Isolated DC/DC Converter for High Density Data Center Applications

Ali Shahabi³, Andrew N Lemmon³, Ryan C Graves³, Sujit Banerjee², Levi Gant², Luke L. Jenkins¹ ¹IBM, United States; ²Monolith Semiconductor, Inc., United States; ³The University of Alabama, United States

D03.16: Novel High-Gain Hybrid Current-Driven DC-DC Converter Topology Snehal Bagawade¹, Majid Pahlevani³, Ryan Fernandes², Praveen Jain¹ ¹Queens University, Canada; ²Sparq Systems Inc., Canada; ³University of Calgary, Canada

D03.17: Half-Bridge Controller with Optimized Pre-Biased Start-Up Wangxin Huang², Tobin Hagan², Maxim Franke²,

Brent McDonald², Oscar Persson¹ ¹Flex Power, Sweden; ²Texas Instruments, United States

D04: Power Electronics for Utility Interface I

Power Electronics for Utility Interface

Majid Pahlevani, University of Calgary Ali Khajehoddin, University of Alberta

- D04.1: Harmonic Filter Topologies for Low DC Bus **Capacitance of 6-Pulse Rectifier Front End** Adjustable Speed Drives Tin Luu, Todd Shudarek MTE Corporation. United States
- D04.2: A Study of Power Electronic Based Stall and **Electromechanical Yaw Power Control Strategies** in Small-Scale Grid-Connected Wind Turbines Ebrahim Mohammadi¹, Roohollah Fadaeinedjad¹, Gerry Moschopoulos² ¹Graduate University of Advanced Technology, Iran; ²University of Western Ontario, Canada
- D04.3: Finite States Model Predictive Direct Power Control for Phase Leg Faults Tolerant Operation of Bidirectional AC/DC Converter Nan Jin, Leilei Guo, Chongyan Zhao, Zhifeng Dou, Guangzhao Cui

Zhengzhou University of Light Industry, China

- A PS-SWM Strategy for Isolated Modular D04.4: Multilevel DC/DC Converter with Reduced Passive **Component Size and Low Total Device Rating** Ran Mo, Ren Xie, Yanjun Shi, Hui Li Florida State University, United States
- Atypical PWM for Maximizing 2L-VSI DC-Bus D04.5: Utilization in Inverter-Based Microgrids with Ancillary Services

Aswad Adib¹, Jacob Lamb², Behrooz Mirafzal¹ ¹Kansas State University. United States: ²Rockwell Automation, United States

- D04.6: **Reachability Analysis for a Grid-Connected** Voltage-Sourced Converter (VSC) Parisa M. Shabestari, Saleh Ziaeinejad, Ali Mehrizi-Sani Washington State University, United States
- D04.7: **Provision of Ancillary Service in a Grid-Connected** Photovoltaic Power System Jéssica P.M. Rocha, Fabiano Salvadori, Camila Seibel Gehrke Federal University of Paraíba – UFPB, Brazil
- D04.8: Solid State Auto-Transformer Concept for **Multi-Pulse Rectifiers** Harish Krishnamoorthy, Srikanth Yerra University of Houston, United States

D04.9: **Use of Series Negative Impedance to Cancel** the Effect of Equivalent Grid Impedance on the Grid-Connected Inverter Stability in the DPGS Yuanbin He², Chun-Tak Lai¹, Henry Shu-Hung Chung¹,

Xin Zhang³, Weimin Wu⁴ ¹City University of Hong Kong, Hong Kong; ²Hangzhou Dianzi University, China; ³Nanyang Technological University, Singapore; ⁴Shanghai Maritime University, China

D04.10: An Accurate Power Control Scheme for **Droop-Controlled Grid-Connected Inverters** Baoiin Liu, Jiniun Liu, Zeng Liu, Teng Wu, Ronghui An Xi'an Jiaotong University, China

D05: Power Electronics for Utility Interface II

Power Electronics for Utility Interface

Alireza Bakhshai, *Queen's University*

Xiong Li, Texas Instrument

- D05.1: Scale-Up Methodology of a Modular Multilevel **Converter for HVDC Applications** Mohammed Alharbi, Subhashish Bhattacharva North Carolina State University, United States
- A SiC-Based Power Electronics Interface for D05.2: Integrating a Battery Energy Storage Into the Medium (13.8 kV) Distribution System Janviere Umuhoza, Haider Mhiesan, Kenneth Mordi, Chris Farnell, Alan Mantooth University of Arkansas, United States
- D05.3: A New Active EMI Filter with Virtual Impedance Enhancement

Zhe Zhang², Weigiang Chen², Ali Bazzi², Scott Ramsay¹, Jeffrev Czapor¹, John Aslanidis¹ ¹DRS Consolidated Controls, Inc., United States; ²University of Connecticut, United States

- D05.4: **Energy Management of Microgrid in Smart** Building Considering Air Temperature Impact Mohamad Abou Houran, Xu Yang, Wenjie Chen XI'AN JIAOTONG UNIVERSITY, China
- D05.5: Single-Phase Bidirectional Three-Level T-Type Inverter Min-Kwon Yang, Woo-Young Choi Chonbuk National University, Korea

D05.6: A Design Investigation of a 1 MVA SiC Medium Voltage Three Phase Rectifier Based on Isolated **Dual Active Bridge** Hanning Tang, Alex Huang The University of Texas at Austin. United States

150

Dialogue Sessions

- D05.7: A Novel Single-Stage High-Frequency Boost Inverter for PV Grid-Tie Applications Hamdy Radwan³, Mahmoud A. Sayed³, Takaharu Takeshita³, Adel A. Elbaset², Gaber Shabib¹ ¹Aswan university, Egypt; ²Minia University, Egypt; ³Nagoya Institute of Technolog, Japan
- D05.8: A New Six-Switch Five-Level Boost-Active Neutral Point Clamped (5L-Boost-ANPC) Inverter Yam Siwakoti University of Technology Sydney, Australia
- D05.9: Modeling and Stability Analysis for Multiple Parallel Grid-Connected Inverters System Xiaoming Zou, Xiong Du, Guoning Wang Chongqing University, China

D06: Controls & Diagnostics of Inverters & Drives

Motor Drives and Inverters

Ali Bazzi, *University of Connecticut* Rakib Islam, *Nexteer Automotive*

- D06.1: Starting Current Reduction of Single-Phase Induction Motor for Ultra-Low Temperature Freezer Seon-Hwan Hwang¹, Jang-Mok Kim² ¹Kyungnam University, Korea; ²Pusan National University, Korea
- D06.2: A Novel Initial Rotor Position Estimation Method for Wound-Rotor Synchronous Starter/Generator Rui Wang, Weiguo Liu, Yujie Zhu, Jichang Peng, Tao Meng Northwestern Polytechnical University, China
- D06.3: Two-Phase X-Type Current Source Rectifier with Reduced Active Switch Count for Open-End Permanent-Magnet Synchronous Generator Louelson Costa², Montiê A. Vitorino², Maurício B.R. Corrêa², Filipe A. C. Bahia², Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Federal University of Campina Grande, Brazil
- D06.4: Online Stator End Winding Thermography Using Infrared Sensor Array

Padmanabhan Sampath Kumar¹, Lihua Xie¹, Mohamed Sathik Mohamed Halick¹, Viswanathan Vaiyapuri² ¹Nanyang Technological University, Singapore;

²Rolls-Royce Singapore Pte., Ltd, Singapore

D06.5: Direct Torque Model Predictive Control of a Poly-Phase Permanent Magnet Synchronous Motor with Current Harmonic Suppression and Loss Reduction Benjamin Cao³, Brandon Grainger³, Xin Wang², Yu Zou¹, Zhi-Hong Mao³

¹Saginaw Valley State University, United States;
 ²Southern Illinois University Edwardsville, United States;
 ³University of Pittsburgh, United States

- D06.6: Generalized Tri-State PWM Method Based High Frequency SiC Three-Phase Inverter Junzhong Xu, Yong Wang, Erlong Zhu, Khurram Hashmi, Xiaoyu Zha, Jingwen Han, Houjun Tang Shanghai Jiao Tong University, China
- D06.7: A Simple Zero-Sequence Voltage Injection Method to Balance the Neutral-Point Potential for Three-Level NPC Inverters Xingda Zhou, Shuai Lu *Chongging University, China*
- D06.8: An Improved Drive Signal Exchange Strategy for Cascaded H-Bridge Topology Hanyang Yu¹, Jian Liu¹, Wenxi Yao¹, Zhengyu Lu¹, Yu Ji² ¹College of Electrical Engineering, Zhejiang University, China; ²State Grid Nantong Power Supply Company, China
- D06.9: Online Fault Detection of Stator Winding Faults in IM Driven by DTC Using the Off-Diagonal Term of the Symmetrical Component Impedance Matrix Alberto Berzoy, Hassan Eldeeb, Osama Mohammed Florida International University, United States
- D06.10: Pulse-Width Modulation Scheme for a ZVS Single-Phase Inverter in Rectifier Operation Yenan Chen, Dehong Xu Zhejiang University, China
- D06.11: An Improved High-Frequency Common-Mode Voltage Injection Method in Modular Multilevel Converter in Motor Drive Application Shuguang Song, Jinjun Liu, Shaodi Ouyang, Xingxing Chen Xi'an Jiaotong University, China
- D06.12: A Power Decoupling Control Method for the Regenerative Cascaded-H-Bridge-Based Motor Drive

Zezhou Yang³, Jinwu Gong³, Jianjun Sun³, Yi Tang², Cheng Cheng³, Xiaoming Zha³, Jinmao Gu¹ ¹Beijing Xinhang Electrical and Mechanical Equipment Co.,Itd, China; ²Nanyang technological University, Singapore; ³Wuhan University, China

D06.13: Voltage Based 2/3/4-Step Commutation for Direct Three-Level Matrix Converter Martin Leubner, Nico Remus, Stephan Schwarz, Wilfried Hofmann Technical University of Dresden, Germany

D06.14: Common-Mode Noise Reduction with Impedance Balancing in DC-Fed Motor Drives Ruirui Chen, Zheyu Zhang, Ren Ren, Jiahao Niu, Handong Gui, Fred Wang, Leon Tolbert, Daniel Costinett, Benjamin Blalock The University of Tennessee, United States

D06.15: Constant Duty Cycle Sinusoidal Output Inverter with Sine Amplitude Modulated High Frequency Link Gustavo Carlos Knabben, Dominik Neumayr, Johann Walter Kolar

PES / ETH Zurich, Switzerland

Dialogue Cession States and a state of the s

152 APEC 2 18 CONFERENCE AND EXPOSITION

- D06.16: An Enhanced PWM Method for Loss Balancing of Five Level T-Type Inverter in PV Systems Mokhtar Aly¹, Emad M. Ahmed¹, Mohamed Orabi¹, Masahito Shoyama² ¹Aswan University. Eavot: ²Kvushu University. Japan
- D06.17: Optimized Short-Through Time Distribution for Inductor Current Ripple Reduction in Z-Source Inverter

Ryuji lijima, Takanori Isobe, Hiroshi Tadano University of Tsukuba, Japan

D06.18: Carrier-Based PWM Design of Multilevel ANPC-Based Converter Through Hierarchical Decomposition Yuzhuo Li, Yunwei Li, Hao Tian University of Alberta, Canada

D07: Inverter Topologies

Motor Drives and Inverters

Ali Khajehoddin, *University of Alberta* Mahshid Amirabadi, *Northeastern University*

D07.1: New Topology for a Single-Phase Buck-Boost Inverter Andreas Mattos Pratto Correa, Telles Brunelli Lazzarin,

Ivo Barbi Federal University of Santa Catarina (UFSC), Brazil

.

D07.2: Analysis and Design of an Energy Regenerative Snubber for Magnetically Coupled Impedance Source Converters

Mojtaba Forouzesh¹, Ahmed Abdelhakim², Yam Siwakoti³, Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²University of Padova, Italy; ³University of Technology Sydney, Australia

- D07.3: A Novel Forward-Mode Five-Level Inverter with High Frequency Link Kunshan Gong, Lei Li Nanjing University of Science and Technology, China
- D07.4: An EMI-Less Full-Bridge Inverter for High Speed SiC Switching Devices

Jun Sakata¹, Masao Taguchi¹, Shoichi Sasaki¹, Tadahiro Kuroda¹, Keiji Toda² ¹*Keio University, Japan; ²Toyota Motor Corporation, Japan*

D07.5: Research on a Multi-Port Converter with Nine-Switch Cells Pan Wang², Xiaoming Zha¹, Fei Liu¹, Chao Chen¹,

Dialogue Sessions

Tianyi Yu¹, Yizhan Zhuang¹, Jinwu Gong¹ ¹Wuhan University, China; ²Wuhan University / Wuhan Electric Power Technical College, China

D07.6: Common-Mode Inductor Saturation Analysis and Design Optimization Based on Spectrum Concept Ruirui Chen, Zheyu Zhang, Ren Ren, Jiahao Niu, Handong Gui, Fred Wang, Leon Tolbert, Daniel Costinett, Benjamin Blalock The University of Tennessee, United States D07.7: Investigation and Evaluation of High Power SiC MOSFETs Switching Performance and Overshoot Voltage

Peizhong Yi, Yujia Cui, Anthony Vang, Lixiang Wei Rockwell Automation, United States

D07.8: Open-End Multilevel Six-Phase Machine Drive System with Three Three-Leg NPC Converters Ivan Da Silva¹, Cursino Jacobina¹, Ayslan Maia¹, Isaac Freitas², Reuben Sousa¹ ¹Federal University of Campina Grande, Brazil; ²Federal University of Paraiba, Brazil

D07.9: Comparative Investigation of PWM Current-Source Inverters for Future Machine Drives Using High-Frequency Wide-Bandgap Power Switches Hang Dai, Thomas Jahns WEMPEC, University of Wisconsin-Madison, United States

D07.10: A Three-Level, T-Type, Power Electronics Building Lock Using Si-SiC Hybrid Switch for High-Speed Drives

Amol Deshpande², Yingzhuo Chen¹, Balaji Narayanasamy², Arvind S Sathyanarayanan¹, Fang Luo² ¹The Ohio State University, United States; ²University of Arkansas, United States

- D07.11: One-Inductor Single-Stage Differential Boost Inverter Operated in Discontinuous Current Mode for Single-Phase Grid-Tied Photovoltaic System Ayato Sagehashi, Le Hoai Nam, Jun-Ichi Itoh Nagaoka University of Technorogy, Japan
- D07.12: Comparative Performance Evaluation of Common Mode Voltage Reduction Three-Phase Inverter Topologies

Di Han, Woongkul Lee, Silong Li, Bulent Sarlioglu University of Wisconsin-Madison, United States

- D07.13: Dynamic Control Set-Model Predictive Control for Field-Oriented Control of VSI-PMSM Shuai Wang¹, Dewei Xu¹, Chushan Li² ¹Ryerson University, Canada; ²Zhejiang University, Canada
- D07.14: Fault-Tolerant Operation with 1-Phase Open in Parallel-Connected Motor Sunku Kwon, Jung-Ik Ha Seoul National University, Korea

D07.15: Duo-Active-Neutral-Point-Clamped Multilevel Converter: an Exploration of the Fundamental Topology and Experimental Verification Vahid Dargahi², Keith Corzine⁵, Johan Enslin², Mostafa Abarzadeh³, Arash Khoshkbar Sadigh⁴, Jose Rodriguez⁶, Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Clemson University, United States; ³École de Technologie Supérieure, University of Quebec. Canada: ⁴Extron Electronics.

United States: ⁵UC Santa Cruz. United States:

⁶Universidad Andres Bello, Chile

Dialogue Sessions

D08: Magnetics and Capacitors

Devices and Components

Edward Herbert, PSMA

Stephan Carlsen, Raytheon Co

- D08.1: Integrated Inductors, Capacitors, and Damping in Bus Bars for dv/dt Filter Applications Andy Schroedermeier, Daniel Ludois University of Wisconsin-Madison, United States
- D08.2: Thermal Model of Litz Wire Toroidal Inductor Based on Experimental Measurements Mylene Delhommais¹, Jean-Luc Schanen¹, Frédéric Wurtz¹, Cécile Rigaud³, Sylvain Chardon³, Stephane Vighetti² ¹Grenoble Institute of Technology, France; ² SIREPE, France; ³TRONICO-ALCEN, France
- D08.3: Comparison Between Desaturation Sensing and Rogowski Coil Current Sensing for Shortcircuit Protection of 1.2 kV, 300 a SiC MOSFET Module Slavko Mocevic², Jun Wang², Rolando Burgos², Dushan Boroyevich², Constantin Stancu¹, Marko Jaksic¹, Brian Peaslee¹ ¹General Motors, United States; ²Virginia Tech/CPES, United States
- D08.4: High Power Density PCB Coil Array Applied to Domestic Induction Heating Appliances Javier Serrano², Jesus Acero², Ignacio Lope¹, Claudio Carretero², José Miguel BurdÃo² ¹BSH Home Appliances Group, Spain; ²University of Zaragoza, Spain
- D08.5: High Frequency LLC Resonant Converter with Magnetic Shunt Integrated Planar Transformer Mingxiao Li, Ziwei Ouyang, Michael Andersen Technical University of Denmark (DTU), Denmark
- D08.6: Impact of Charge Redistribution on Delivered Energy of Supercapacitors with Constant Power Loads Hengzhao Yang

California State University, Long Beach, United States

D08.7: Test Fixture to Apply DC Bias and AC Ripple Current for Reliability Testing of Electrolytic Capacitors Xuechao Wang, Marzieh Karami, Rangarajan Tallam Rockwell Automation. United States

D08.8: Thermal Management of Compact Nanocrystalline Inductors for Power Dense Converters Yiren Wang, Gerardo Calderon-Lopez, Andrew Forsyth The University of Manchester, United Kingdom

Dialogue Sessions

D09: Power Devices

Devices and Components

Hui Li, Florida State University

Rostan Rodrigues, ABB

D09.1: Comparative Evaluation of Static and Dynamic Performance of 1.2-kV SiC Power Switches Yang Jiao, Milan Jovanović Delta Products Corporation, United States

D09.2: Dynamic Performance of 4H-SiC Power MOSFETs and Si IGBTs Over Wide Temperature Range Jinwei Qi, Kai Tian, Zhangsong Mao, Song Yang, Wenjie Song, Mingchao Yang, Xuhui Wang, Anping Zhang Xi'an Jiaotong University, China

D09.3: Developing a Standardized Method for Measuring and Quantifying Dynamic on-State Resistance via a Survey of Low Voltage GaN HEMTs

Thomas Foulkes, Tomas Modeer, Robert Pilawa-Podgurski University of Illinois at Urbana-Champaign, United States

D09.4: Development of Isolated SenseGaN Current Monitoring for Boundary Conduction Mode Control of Power Converters

> Mehrdad Biglarbegian, Namwon Kim, Tiefu Zhao, Babak Parkhideh

University of North Carolina at Charlotte, United States

- D09.5: Voltage Rating and Performances Enhancement Technology for Market Available Diodes Han Peng¹, Kunqi Li², Xiaoyong Ren², Ming Xu¹ ¹FSP-Powerland Technology Inc., China; ²Nanjing University of Aeronautics and Astronautics, China
- D09.6: Single Shot Avalanche Energy Characterization of 10kV, 10A 4H-SiC MOSFETs Ashish Kumar, Sanket Parashar, Jayant Baliga, Subhashish Bhattacharya North Carolina State University, United States
- D09.7: Investigations on Circuits and Layout for Non-Intrusive Switch Current Measurements in High Frequency Converters Using Parallel GaN HEMTs Shahriar Jalal Nibir, Daniel Fregosi, Babak Parkhideh University of North Carolina at Charlotte, United States

D10: Device Reliability

.

Devices and Components

Dong Cao, *North Dakota State University* Christina Dimarino, *Virginia Tech*

- D10.1: High Reliable and High Bonding Strength of Silver Sintered Joints on Copper Surfaces by Pressure Sintering Under Air Atmosphere Ly May Chew, Wolfgang Schmitt Heraeus Deutschland GmbH & Co. KG, Germany
- D10.2: Power Semiconductor Ageing Test Bench Dedicated to Photovoltaic Applications Mouhannad Dbeiss, Yvan Avenas Grenoble Institute of Technology, France
- D10.3: A New Gate Drive Technique for Superjunction MOSFETs to Compensate the Effects of Common Source Inductance Bernhard Zojer Infineon Technologies Austria AG, Austria
- D10.4: Online Junction Temperature for Off-the-Shelf Power Converters

Mohamed Halick Mohamed Sathik¹, Sundararajan Prasanth¹, Firman Sasongko¹, Sampath Kumar Padmanabhan¹, Josep Pou¹, Rejeki Simanjorang² ¹ROLLS ROYCE-NTU CORPORATE LAB, Singapore; ²Rolls-Royce Rolls-Royce Singapore Pte Ltd, Singapore

D10.5: Short Circuit Characterization of 3rd Generation 10 kV SiC MOSFET

Shiqi Ji², Marko Laitinen¹, Xingxuan Huang², Jingjing Sun², William Giewont¹, Leon Tolbert², Fred Wang² ¹Danfoss Drives, United States; ²University of Tennessee, United States

D11: Power Module Packaging, Thermal & Application

Power Electronics Integration and Manufacturing

John Vigars, *Allegro Microsystems* Yuxiang Shi, *ABB USCRC*

> Lei Li, Puqi Ning, Ye Li, Xuhui Wen, Dong Zhang, Qiongxuan Ge, Yaohua Li Institute of Electrical Engineering, Chinese Academy of Sciences, China

D11.3: A Dynamic Thermal Controller for Power Semiconductor Devices

Mohamed Halick Mohamed Sathik¹, Sundararajan Prasanth¹, Firman Sasongko¹, Sampath Kumar Padmanabhan¹, Josep Pou¹, Rejeki Simanjorang² ¹Nanyang Technological University, Singapore; ²Rolls-Royce Rolls-Royce Singapore Pte Ltd, Singapore

D11.4: Modular Heat Sink for Chip-Scale GaN Transistors in Multilevel Converters

Nathan Pallo², Chirag Kharangate¹, Tomas Modeer², Joseph Schaadt¹, Mehdi Asheghi¹, Kenneth Goodson¹, Robert Pilawa-Podgurski² ¹Stanford University, United States; ²University of Illinois, United States

D11.5: Analysis and Design of an Overcurrent Protection Scheme Based on Parasitic Inductance of SiC MOSFET Power Module

Keyao Sun¹, Jun Wang¹, Rolando Burgos¹, Dushan Boroyevich¹, Yonghan Kang², Edward Choi² ¹CPES, Virginia Tech, United States; ²LG Electronics, United States

D11.6: Online Junction Temperature Extraction and Aging Detection of IGBT via Miller Plateau Width

Jingcun Liu, Guogang Zhang, Qian Chen, Lu Qi, Zheng Qin, Jianhua Wang, Yingsan Geng *Xi'an Jiaotong University, China*

D11.7: Bus Bar Embedded Rogowski Coil

Yoshikazu Kuwabara¹, Keiji Wada¹, Jean-Michel Guichon², Jean-Luc Schanen², James Roudet² ¹TokyoMetropolitanUniversity, Japan; ²Univ. Grenoble Alpes, Grenoble Institute of Technology, France

D11.8: Active Power Cycling and Condition Monitoring of IGBT Power Modules Using Reflectometry Abu Hanif, Swagat Das, Faisal Khan University of Missouri Kansas City, United States

D11.9: Development of a Low-Inductance SiC Trench MOSFET Power Module for High-Frequency Application

Zhiqiang Jack Wang¹, Fei Yang², Steven Campbell¹, Madhu Chinthavali¹ ¹Oak Ridge National Laboratory, United States; ²University of Tennessee, United States

8 APEC 2+18 CONFERENCE AND EXPOSITION

Dialogue Sessions

D12: Power Devices Modeling & Simulation

Modeling and Simulation

Marco Meola, *Integrated Device Technology* Yu Du, *ABB*

D12.1: A Scalable Drain Current Model of AIN/GaN Mis-Hemts with Embedded Source Field-Plate Structures

Hitoshi Aoki², Hiroyuki Sakairi¹, Naotaka Kuroda¹, Yohei Nakamura¹, K. Chikamatsu¹, Ken Nakahara¹ ¹*ROHM Co., Ltd., Japan;* ²*Teikyo Heisei University, Japan*

- D12.2: Inverter Power Module Parasitics Modeling with Cross-Coupling Simplification for Fast Model Extraction and Switching Characteristics Simulation Thomas Bayer General Electric. United States
- D12.3: Electro-Thermal Co-Simulation of Two Parallel-Connected SiC-MOSFETs Under Thermally-Imbalanced Conditions

Yasushige Mukunoki¹, Takeshi Horiguchi¹, Akinori Nishizawa¹, Kentaro Konno², Tsubasa Matsuo², Masaki Kuzumoto², Makoto Hagiwara², Hirofumi Akagi² ¹Mitsubishi Electric Corp., Japan; ²Tokyo Institute of Technology, Japan

D12.4: A Full Power Emulation Platform for Evaluating Power Semiconductors

Juncheng Lucas Lu¹, Yajie Qiu², Di Chen² ¹GaN Systems Inc., Canada; ²GaN Systems Inc., Canada

D12.5: Normalization-Based Approach to Electric Motor BVR Related Capacitances Computation

Jero Ahola², Annette Muetze¹, Markku Niemelä², Aleksei Romanenko² ¹Graz University of Technology, Austria; ²Lappeenranta University of Technology, Finland

D12.6: Circuit Simulation of a Silicon-Carbide MOSFET Considering the Effect of the Parasitic Elements on Circuit Boards by Using S-Parameters

Tatsuya Yanagi³, Hiroyuki Sakairi³, Hirotaka Otake³, Naotaka Kuroda³, Seiya Kitagawa³, Noriyoshi Hashimoto², Ryo Takeda¹, Ken Nakahara³ ¹Keysight Technologies International Japan GK, Japan; ²Keysight Technologies Japan GK, Japan; ³Rohm Co., Ltd, Japan

D12.7: Ceramic Capacitors: Turning a Deficiency Into an Advantage

ialogue Sessions

Sam Ben-Yaakov¹, Ilya Zeltser² ¹Ben-Gurion University of the Negev, Israel; ²Rafael Advanced Defense Systems Ltd., Israel

D12.8: Fatigue Life Prediction Model for Surface Mountable Power Electronics Fuses Ramdev Kanapady, Tissaphern Mirfakhrai, Clarita Knoll, Zhuo Min Liu Eaton Corporation, United States

D12.9: Finite Element Model Optimization and Thermal Network Parameter Extraction of Press-Pack IGBT Hai Ren¹, Wei Lai¹, Zeshen Jiang¹, Shengyang Kang¹, Ran Yao¹, Li Ran¹, Hui Li¹, Rui Jin², Jialiang Wen² ¹Chongging University. China: ²Global Energy

Interconnection Research Institute, China

D12.10: Modeling the Gate Driver IC for GaN Transistor: a Black-Box Approach

Ruiliang Xie², Guangzhao Xu², Xu Yang², Gaofei Tang¹, Jin Wei¹, Mofan Tian², Feng Zhang², Wenjie Chen², Laili Wang², Kevin J Chen¹ ¹The Hong Kong University of Science and Technology, Hong Kong; ²Xi'an Jiaotong University, China

D13: Modeling and Simulation of Power Converters

Modeling and Simulation

Babak Parkhideh, University of North Carolina Charlotte

Hui Li, Florida State University

D13.1: A New Electronic Design Automation Tool for the Optimization of PwrSoC/PwrSiP DC-DC Converters Ciaran Feeney, Ningning Wang Senaled, China

D13.2: Modeling and Analysis of Coexisting Slowand Fast-Scale Instabilities in Current-Mode PI-Controlled Hbridge Inverter

Xuanlyu Wu¹, Weilin Li¹, Ruihong Zhang¹, Xiaohua Wu¹, Xiaobin Zhang¹, Bei Wang³, Guochun Xiao², Shuai Zhang² ¹Northwestern Polytechnical University, China; ²Xi'an Jiaotong University, China; ³Xi'an XD Electric Research Institute Co., Ltd. China

D13.3: Simplified Discrete-Time Modeling and Dynamic Characteristics Analysis of Pi-Controlled Voltage Source Inverter

Xuanlyu Wu¹, Ruihong Zhang¹, Weilin Li¹, Xiaohua Wu¹, Xiaobin Zhang¹, Bei Wang³, Guochun Xiao², Daoshu Yang² ¹Northwestern Polytechnical University, China;

²Xi'an Jiaotong University, China; ³Xi'an XD Electric Research Institute Co., Ltd, China

D13.4: Sate-Space Modelling and Design of a 10MHz 180W Class E DC/DC Converter Using WBG Devices

Samer Aldhaher, Paul Mitcheson Imperial College London, United Kingdom

D13.5: An Improved Robust Adaptive Parameter Identifier for DC-DC Converters Using H-Infinity Design Palak Jain¹, Jason Poon³, Li Jian², Costas Spanos³, Seth R. Sanders³, Jian-Xin Xu¹, Sanjib Kumar Panda¹ ¹National University of Singapore, Singapore; ²Northeast Electric Power University, China; ³University of California, Berkeley, United States

- D13.6: Harmonics and Voltage Quality in Post-Fault Reconfigured Multi-Level Inverters Weiqiang Chen, Ethan Hotchkiss, Ali Bazzi UCONN, United States
- D13.7: Fault-Tolerant Performance Comparisons Between External and Internal Rotor PMa-SynRMs Sai Sudheer Reddy Bonthu, Tawhid Bin Tarek Md, Arafat Akm, Zakirul Islam Md, Seungdeog Choi The University of Akron, United States
- D13.8: Performance Analysis of Rare-Earth and Rare-Earth Free External Rotor Motors Under Eccentricity Faults Sai Sudheer Reddy Bonthu, Tawhid Bin Tarek Md, Zakirul

Islam Md, Seungdeog Choi The University of Akron, United States

- D13.9: Novel Hardware-in-the-Loop Simulation (HILS) Technology for Virtual Testing of a Power Supply Yu Yonezawa, Hiroshi Nakao, Yoshiyasu Nakashima *Fujitsu Laboratories LTD., Japan*
- D13.10: Performance Analysis of Synchronization Algorithms for Grid-Connected Power Converters Under Sub and Inter-Harmonics Distortion Jean Marcos Lobo Da Fonseca, Samuel Soares Queiroz, Siomara Lima, Welton Da Silva Lima, Rosana Guimaraes Almeida, Francisco Kleber Lima, Carlos Gustavo Branco Federal University of Ceara, Brazil
- D13.11: Design and Analysis of a New GaN-Based AC/DC Topology for Battery Charging Application Akrem Elrajoubi, Kenny George, Simon Ang University of Arkansas, United States

D14: Control I

Control

ialogue Sessions

Martin Ordonez, *The University of British Columbia* Fang Luo, *University of Arkansas*

D14.1: A Concurrent Design Methodology for Grid-Current Feedback Active Damping for LCL-Based Grid-Tied Voltage-Source Converter Jiazhi Liang¹, Jiuchun Jiang¹, Olorunfemi Ojo²,

Josiah Haruna² ¹Beijing Jiaotong University, China; ²Tennessee technological University, United States

D14.2: Iterative Learning Controller for Flyback Inverter: a Hybrid Learning Scheme

Minsung Kim, Byeongcheol Han, Sungho Son, Sooa Kim, Jun-Seok Kim, Kwang-Seop Kim, Hyosin Kim Pohang University of Science and Technology, Korea

D14.3: A Gate Drive with Active Voltage Divider Based Auxiliary Power Supply for Medium Voltage SiC Device in High Voltage Applications Boxue Hu, Zhuo Wei, He Li, Diang Xing, Risha Na, John Brothers, Jin Wang

The Ohio State University, United States

D14.4: New Communication and Isolation Technology for Integrated Gate Driver IC Solutions Suitable for IGBT and Si/SiC MOSFETs: Gate Drive Units, Intelligent Integrated Drivers Andrew Smith, Kevin Lenz Power Integrations, Inc., Germany: Power Integrations

Power Integrations, Inc., Germany; Power Integrations, Inc., United States

D14.5: Sensorless Control of Switched Reluctance Motor Drive Using an Improved Simplified Flux Linkage Model Method Tao Wang, Wen Ding, Yanfang Hu, Shuai Yang, Shuai Li

Tao Wang, Wen Ding, Yanfang Hu, Shuai Yang, Shuai Li *Xi'an Jiaotong University, China*

- D14.6: A Fast Selection Algorithm Based on Binary Numbers for Capacitor Voltage Balance in Modular Multilevel Converter 3 Tao Wang, Hua Lin, Zhe Wang, Yajun Ma, Xingwei Wang Huazhong University of Science and Technology, China
- D14.7: The Improved Model Predictive Control Based on Novel Error Correction Between Reference and Predicted Current Guiping Du, Jiajian Li, Zhifei Liu South China University of Technology, China
- D14.8: Transient Angle Stability Analysis of Grid-Connected Converters with the First-Order Active Power Loop Heng Wu, Xiongfei Wang Aalborg University, Denmark
- D14.9: Closed Loop Analog Active Gate Driver for Fast Switching and Active Damping of SiC MOSFET Vamshi Krishna Miryala, Kamalesh Hatua IIT Madras, India
- D14.10: Methods for Monitoring 3-D Temperature Distributions in Power Electronic Modules Christoph van der Broeck¹, Robert Lorenz², Rik De Doncker¹ ¹ISEA RWTH Aachen, Germany; ²WEMPEC UW Madison, United States
- D14.11: A Sampling Scheme for Three-Phase High Switching Frequency and Speed Converter Bo Liu, Ren Ren, Zheyu Zhang, Fred Wang, Daniel Costinett the University of Tennessee. United States

D14.12: Super-High Bandwidth Secondary Control of AC Microgrids

Tomislav DragiÄ ević, Rasool Heydari, Frede Blaabjerg *Aalborg University, Denmark*

162 APEC 2★18 CONFERENCE AND EXPOSITION

D15: Control II

Control

Martin Ordonez, The University of British Columbia

D15.1: Real-Time Calculation Method for Single-Phase Multilevel Converters Based on Phase-Shifted Carrier Pulsewidth Modulation

Junpeng Ma², Xiongfei Wang¹, Frede Blaabjerg¹, Wensheng Song² ¹Aalborg University, Denmark; ²Southwest Jiaotong University. China

- D15.2: A Hybrid Communication Topology for Modular Multilevel Converter Hao Tu, Srdjan Lukic North Carolina State University, United States
- D15.3: Coil Misalignment Compensation Algorithm for Single-Stage Inductive Wireless Power Transfer System Using Model-Based Approach Mina Kim, Hwa-Pyeong Park, Jee-Hoon Jung UNIST, Korea
- D15.4: Output Voltage Regulation of IPOS Modular Dual Active Bridge DC/DC Converters Using Sliding Mode Control

Sangmin Lee, Yoon-Cheul Jeung, Dong-Choon Lee Yeungnam University, Korea

- D15.5: A Novel Bidirectional Current Estimator for Digital Controlled DC-DC Converters Rajat Channappanavar, Santanu Mishra Indian Institute of Technology Kanpur, India
- D15.6: Active Thermal Cycle Reduction of Power Modules via Gate Resistance Manipulation Christoph van der Broeck¹, Lukas Ruppert¹, Robert Lorenz², Rik De Doncker¹ ¹ISEA RWTH Aachen, Germany; ²WEMPEC UW Madison,
- D15.7: Single-Inductor Multi-Capacitor Buck Converter for High Peak-to-Average Power Envelope Tracking

United States

Inder Kumar, Arnab Dey, Santanu Kapat IIT Kharagpur, India

- D15.8: Active Power Decoupling Method Based on Dual Buck Circuit with Model Predictive Control Shunlong Xiao, Xiao Li, Haiyu Zhang, Robert Balog Texas A&M University, United States
- D15.9: Noise Mitigation and Delay Compensation in High Frequency Dual Current Programmed Mode Control Kamal Sabi, Daniel Costinett University of Tennessee, United States
- D15.10: Peak Offsetting Based CPM Controller for Multi-Level Flying Capacitor Converters Liangji Lu², Sheikh Ahsanuzzaman², Aleksandar Prodić²,

Giacomo Calabrese¹, Giovanni Frattini¹, Maurizio Granato¹ ¹Texas Instruments, Germany; ¹Texas Instruments, Italy; ²University of Toronto, Canada

- D15.11: Active Gate Control for Switching Waveform Shaping Irrespective of the Circuit Stray Inductance in a Practical Full-Bridge IGBT Inverter Tomoyuki Mannen¹, Keiji Wada¹, Hidemine Obara³, Koutaro Miyazaki², Makoto Takamiya², Takayasu Sakurai² ¹Tokyo Metropolitan University, Japan; ²University of Tokyo, Japan; ³Yokohama National University, Japan
- D15.12: An Improved Modulation Strategy for Quasi-Z-source Rectifier with Minimum Switching Frequency and High Efficiency Xinying Li, Yan Zhang, Jinjun Liu, Yanfei Huang, Kaicheng Ding Xi'an Jiaotong University. China
- D15.13: AC- and DC-Side Start-Up Strategies for Half-/ Full-Bridge Hybrid Modular Multilevel Converter Ang Li, Lei Lin, Chen Xu, Jiabing Hu Huazhong University of Science and Technology, China

D16: Wireless Power Transfer

Wireless Power Transfer

Brian Zahnstecher, PowerRox

Sheldon Williamson, University of Ontario Institute of Technology

- D16.1: Modeling the Dynamics of Wireless Power Transfer Using a Generalized Average Model of High-Q Resonators Hongchang Li, Jingyang Fang, Xiaoqiang Li, Shuxin Chen, Yi Tang Nanyang Technological University, Singapore
- D16.2: Resonant Full-Bridge Synchronous Rectifier Utilizing 15V GaN Transistors for Wireless Power Transfer Applications Following Airfuel Standard Operating at 6.78MHz

Christopher Have Kiaerskou Jensen, Frederik Monrad Spliid, Jens Christian Hertel, Yasser Nour, Tiberiu-Gabriel Zsurzsan, Arnold Knott

Technical University of Denmark, Denmark

D16.3: Analysis and Design of Load Independent ZPA Operation for P/S and PS/S Tank Networks in IPT Applications

Suvendu Samanta, Akshay Rathore Concordia University, Canada

D16.4: A Pulse Density Modulation Method for ZVS Full-Bridge Converters in Wireless Power Transfer Systems

Hongchang Li¹, Jingyang Fang¹, Shuxin Chen¹, Yi Tang¹, Kangping Wang² ¹Nanyang Technological University, Singapore;

²Xi'an Jiaotong University, China High Efficiency Capacitive Power Tre

D16.5: High Efficiency Capacitive Power Transfer Converter

Jaime Lopez-Lopez, Carlos Salto, Pablo Zumel, Cristina Fernandez, Alba Rodriguez-Lorente, Emilio OlÃas *Universidad Carlos III de Madrid, Spain*

Dialogue Sessions

- D16.6: A High-Frequency Inverter Architecture for D17.2: Providing Variable Compensation in Wireless **Power Transfer Systems** Ashish Kumar, Sreyam Sinha, Khurram Afridi University of Colorado Boulder, United States D16.7: A Single-Stage 6.78 MHz Transmitter with the Improved Light Load Efficiency for Wireless **Power Transfer Applications** D17.3: Ling Jiang, Daniel Costinett University of Tenessee, United States **Improved Design Optimization of Efficient** D16.8: Matching Networks for Capacitive Wireless **Power Transfer Systems** D17.4: Sreyam Sinha, Ashish Kumar, Khurram Afridi University of Colorado Boulder, United States D16.9: A Novel Target Detection Algorithm for Capacitive Xin Yan **Power Transfer Systems** Chae-Ho Jeong, Phuong-Ha La, Sung-Jin Choi, Hee-Su Choi D17.5: University of Ulsan, Vietnam; University of Ulsan, Korea Analysis and Design of an Integrated LCL-S D16.10: **Contactless Resonant Converter** Wei Gao², Lixin Jiang³, Qianhong Chen², Xiaoyong Ren², Zhiliang Zhang², Siu-Chung Wong¹ D17.6: ¹Hong Kong Polytechnic University, China; ²Nanjing University of Aeronautics and Astronautics, China: ³Nari Technology Co., Ltd., China Saturable Inductors for Superior Reflexive Field D16.11: **Containment in Inductive Power Transfer Systems** D17.7: Alireza Dayerizadeh, Srdjan Lukic North Carolina State University, United States Magnetic-Field-Model Based Analysis of Two-D16.12: Yuan Gui¹ Phase Magnetically Coupled Resonant Wireless **Power Transfer System** Tianming Mei¹, Fuxin Liu¹, Chong Jiang¹, Xuling Chen¹, Ralph M. Kennel² D17.8: ¹Nanjing University of Aeronautics and Astronautics, China; ²Technical University of Munich, Germany D17: Wind And Solar Power **Renewable Energy Systems** D17.9: Jason Pries, Oak Ridge National Laboratory Sara Ahmed, University of Texas at San Antonio **Dialogue** Sessions
 - D17.1: A 5-Level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerless Inverter for Grid **Connected Photovoltaic Application** Abhijit Kadam, Anshuman Shukla Indian Institute of Technology Bombay, India

A Hybrid CHB Multilevel Inverter with Supercapacitor Energy Storage for Grid-Connected **Photovoltaic Systems**

Lan Xiong¹, Yuan Gui¹, Huimei Liu¹, Wen Yang¹, Jinwu Gona² ¹Hubei University of Technology, China; ²Wuhan University, China

A New Dynamic PV Firming Control Algorithm Using Grid-Tied Three-Port Micro-Converter Mahmood Alharbi, Anirudh Pise, Hu Haibing, Issa Batarseh University of Central Florida, United States

A Method for FRT Capacity Enhancement of DFIG **Based Wind Farm Using Saturated Core Fault Current Limiter** Jiaxin Yuan, Zehua Huang, Pengcheng Gan, Feiran Xiao, Wuhan University, China

Single-Phase Dual-Mode Four-Switch Buck-Boost Transformerless PV Inverter with Inherent Leakage **Current Elimination** Qingyun Huang, Qingxuan Ma, Alex Huang University of Texas at Austin. United States

Sensitivity Analysis of the Wind Farm High Frequency Resonance Under Transmission **Cable Resistance Variation** Yipeng Song, Esmaeil Ebrahimzadeh, Frede Blaabjerg Aalborg University, Denmark

A Synergistic Modulation Method for Hybrid Cascaded Photovoltaic Inverter with Supercapacitor Lan Xiong¹, Huimei Liu¹, Jinwu Gong², Wen Yang¹,

¹Hubei University of Technology, China; ²Wuhan University. China

Active Gate Driver for SiC MOSFET Based PV **Inverter with Enhanced Operating Range** Sayan Acharya², Xu She¹, Fengfeng Tao¹, Tony Frangieh¹, Maja Harfman Todorovic¹, Rajib Datta¹ ¹GE Global Research, United States; ²North Carolina State University, United States

Comparative Evaluation of Modulation Strategies for a Single-Phase PV Micro-Inverter with **High-Frequency Transformer**

Jonatas Rodrigo Kinas, Diego Alberto Acevedo-Bueno, Gabriel Sales Lins Rodrigues, Montie Alves Vitorino, Alexandre Cunha Oliveira, Antonio Marcus Nogueira Lima

Federal University of Campina Grande (UFCG), Brazil

D17.10: Flexible High Efficiency Battery-Ready PV Inverter for Rooftop Systems

Namwon Kim, Mehrdad Biglarbegian, Babak Parkhideh University of North Carolina at Charlotte, United States

166

- D17.11: Performance Evaluation of Single-Phase Transfomer-Less PV Inverter Topologies Jinia Roy, Yinglai Xia, Raja Ayyanar Arizona State University, United States
- D17.12: A Dual-Active-Bridge-Based High-Frequency Isolated Inverter for Interfacing Multiple PV Modules with Distributed MPPT Shiladri Chakraborty, Souvik Chattopadhyay Indian Institute of Technology Kharagpur, India
- D17.13: Reliability Evaluation of Power Capacitors in a Wind Turbine System Dao Zhou, Frede Blaabjerg *Aalborg University, Denmark*

D18: Microgrids and Grid Connect

Renewable Energy Systems

Yingying Kuai, Caterpillar Inc.

D18.1: A Series-Resonance-Based Three-Port Converter with Unified Autonomous Control Method in DC Microgrids

Panbao Wang², Shuxin Zhang², Dianguo Xu², Xiaonan Lu¹ ¹Argonne National Laboratory, United States; ²Harbin Institute of Technology, China

- D18.2: Decoupled Modeling and Control of the Modular Multilevel Converter Binbin Li, Zigao Xu, Jian Ding, Dianguo Xu Harbin Institute of Technology, China
- D18.3: Control System Design and Stability Analysis for a Three Phase SiC-Based Filter-Less Grid-Connected PV Inverter Yanjun Shi, Lu Wang, Hui Li Florida State University, United States
- D18.4: A Phase-Lead Compensation Strategy on Enhancing Robustness Against Grid Impedance for LCL-Type Grid-Tied Inverters Chun Huang, Tianzhi Fang, Li Zhang Nanjing University of Aeronautics and Astronautics, China
- D18.5: Stability Improvement of Microgrids Using a Novel Reduced UPFC Structure via Nonlinear Optimal Control Hossein Saberi, Shahab Mehraeen, Boyu Wang

Louisiana State University, United States

D18.6: Stability and Improvement of LCL-Filtered Inverters Using Only Grid Current Feedback Active Damping for Weak Grid Applications Jinming Xu, Binfeng Zhang, Shaojun Xie

Nanjing University of Aeronautics and Astronautics, China D18.7: An Improved Discontinuous Space Vector Modulation Scheme for the Three-Phase Impedance Source Inverters

Ahmed Abdelhakim², Frede Blaabjerg¹, Paolo Mattavelli² ¹Aalborg University, Denmark; ²University of Padova, Italy

D18.8: A Phase Feedforward Based Virtual Synchronous Generator Control Scheme

Mingxuan Li², Yue Wang², Hui Zhou², Weihao Hu¹ ¹Aalborg University, Denmark; ²Xi'an Jiaotong University, China

- D18.9 : An Improved Hierarchy and Autonomous Control for DC Microgrid Based on Both Model Predictive and Distributed Droop Control Shunlong Xiao, Robert Balog *Texas A&M University, United States*
- D18.10: Two-Degree-of-Freedom Admittance-Type Droop Control for Plug-and-Play DC Microgrid Zheming Jin, Josep Guerreros Aalborg University, Denmark
- D18.11: A Complete Small Signal Modeling and Adaptive Stability Analysis of an Islanded Mode Operation of a Nonlinear Droop-Controlled MICROGRID Hassan Abdelgabir², Ali Boynuegri², Ali Elrayyah¹, Yilmaz Sozer² ¹Oatar Research Foundation, Oatar; ²University of Akron, United States

.

D19: Renewable Energy Systems

Renewable Energy Systems

Seungdeog Choi, *The University of Akron* Ruoyu Hou, *GaN Systems Inc.*

D19.1: Modeling and Control of a Dual Cell Link for Battery-Balancing Auxiliary Power Modules Weizhong Wang, Matthias Preindl Columbia University, United States

D19.2: Diagnosis of Inter-Turn Short Circuit and Rotor Eccentricity for PMSG Used in Wave Energy Conversion

Hongwei Fang², Yuzhu Feng², Runan Song², Ru Jiang¹ ¹China North Vehicle Research Institute, China; ²Tianjin University, China

D19.3: Circuit Parameters Extraction Algorithm for a Lithium-Ion Battery Charging System Incorporated with Electrochemical Impedance Spectroscopy S M Rakiul Islam¹, Sung-Yeul Park¹, Balakumar Balasingam² ¹University of Connecticut, United States; ²University of Windsor, Canada

ialogue Sessions

- D19.4: An Efficient Voltage Equalization Algorithm for Low-Power Supercapacitor Applications Yu Song, Weirong Liu, Hongtao Liao, Heng Li, Yun Jiao, Jun Peng, Zhiwu Huang Central South University, China
- D19.5: Outlier Mining-Based Fault Diagnosis for Multicell Lithium-Ion Batteries Using a Low-Priced Microcontroller

Taesic Kim², Amit Adhikaree², Rajendra Pandey², Daewook Kang¹, Myoungho Kim¹, Chang-Yeol Oh¹, Juwon Back¹ ¹Korea Electrotechnology Research Institute, Korea: ²Texas A&M University-Kingsville, United States

- D19.6: Low-Frequency Input Ripple Current Compensation in Single-Phase Fuel Cell Power Systems Soumya Sinha, Wajiha Shiren, Sumit Pramanick University of Houston. United States
- D19.7: A Hybrid Flyback Led Driver with Utility Grid and Renewable Energy Interface Awab Ali³, Jonathan Lange³, Ali Elrayyah², Yilmaz Sozer³, Alex De Abreu-Garcia³, Augustin Mpanda¹

¹ESIEE-Amiens, France; ²Qatar Research Foundation, Qatar; ³University of Akron, United States

D20: Transportation Power Electronics

Transportation Power Electronics

Somasundaram Essakiappan, The University of North Carolina at Charlotte

Ralph Taylor, *Delphi Automotive*

D20.1: Frozen Leg Operation of a Three-Phase Dual Active Bridge DC/DC Converter at Light Loads Saeid Haghbin³, Frede Blaabjerg¹, Farzad Yazdani², Amir Saiiad Bahman¹

¹Aalborg University, Denmark; ²Chalmers University, Sweden: ³Elbind Elektronik AB. Sweden

- D20.2: Adaptive Detection of DC Arc Faults Based on **Hurst Exponents and Current Envelope** Yousef Abdullah², Boxue Hu², Zhuo Wei², Jin Wang², Amin Emrani¹ ¹Ford Motor Company, United States; ²The Ohio State University, United States
- D20.3: SiC Based on-Board EV Power-Hub with High-Efficiency DC Transfer Mode Through AC Port for Vehicle-to-Vehicle Charging Miad Nasr, Kshitij Gupta, Carlos Da Silva, Cristina Amon, Olivier Trescases University of Toronto, Canada
- D20.4: **Three-Phase on-Board Charger with** Three Modules of Single-Stage Interleaved Soft-Switching AC-DC Converter Byeongwoo Kim, Hyojun Kim, Sewan Choi Seoul National University of Science and Technology, Korea

- D20.5: An Improved Minimum-Cost Charging Schedule for Large-Scale Penetration of Electric Vehicles Wenping Zhang, Caleb Dreise, Riming Shao, Liuchen Chang University of New Brunswick, Canada
- D20.6: Accurate Voltage Equalization of Supercapacitors with Online Identification Model Xiaoyong Zhang, Yun Jiao, Hongtao Liao, Heng Li, Yanhui Zhou, Zhiwu Huang Central South University, China
- D20.7: Design and Optimization of a Dielectric-Gas-Based Single-Phase Electrostatic Motor Nannan Zhao², Fei Lu¹, Hua Zhang¹, Chris Mi¹ ¹San Diego State University, United States; ²Xi'an University of Architecture and Technology, China
- D20.8: A Finite-Set Model-Based Predictive Battery Thermal Management in Connected and Automated Hybrid Electric Vehicles Chong Zhu, Fei Lu, Hua Zhang, Kangxi Zhu, Chris Mi San Diego State University, United States
- D20.9: Single-Phase Multifunctional Onboard Battery Chargers with Active Power Decoupling Capability Hoang Vu Nguyen, Dong-Choon Lee Yeungnam University, Korea
- D20.10: A Fast-Speed Heater with Internal and **External Heating for Lithium-Ion Batteries** at Low Temperatures Yunlong Shang¹, Chenghui Zhang², Naxin Cui², Chris Mi¹ ¹San Diego State University, United States; ²Shandong University, China

. **D21: LED Applications**

Power Electronics Applications

Jim Spangler, Spangler Protype Inc

D21.1: **Cascode Switching Modeling and Improvement in** Flyback Converter for LED Lighting Applications Liang Jia¹, Srikanth Lakshmikanthan¹, Yan-Fei Liu² ¹Google Inc, United States; ²Queens University, Canada

D21.2: Controlling the Input Impedance of Constant Power Loads

Manuel Gutierrez¹, Peter Lindahl¹, Arijit Banerjee², Steven Leeb¹

¹Massachusetts Institute of Technology, United States; ²University of Illinois Urbana-Champaign, United States

D21.3: 380V Digital Isolated Quasi-Resonant Multiphase **Converter for High Power LED Application** Stefano Saggini², Roberto Rizzolatti², Mario Ursino², Osvaldo Zambetti¹ ¹STMicroelectronics, Italy; ²University of Udine, Italy

APEC. 2+18 CONFERENCE AND EXPOSITION 170

Dialogue Sessions

D21.4: Developing Highly Reliable LED Luminaires for High Temperature Applications Using AC-Direct Driving LED Technology Hui Zhang

State University of New York at Oswego, United States

D21.5: Active Pulse Shaping Circuit for Bandwidth Enhancement of High-Brightness LEDs Using GaN Devices

Kumar Modepalli¹, Leila Parsa² ¹Rensselaer Polytechnic Institute, United States; ²University of California, Santa Cruz, United States

D21.6: A High Power Factor Two-Channel PSR Flyback LED Driver with Controllable Output Current Sharing Based on Open-Looped SSPR Control Chunqiao Wu, Hanjing Dong, Xiaogao Xie Hangzhou Dianzi University, China

D22: Industrial and Grid Applications

Power Electronics Applications

Yogesh Ramadass, Texas Instruments

Geng Niu, Karma Automotive

D22.1: DC Distributed Systems Stabilization and Performance Improvement Using Small-Signal Voltage Injection Ahmed Aldhaheri, Amir Etemadi The George Washington University, United States

D22.2: Load Adaptive Modulation Method for All-Metal Induction Heating Application Hwa-Pyeong Park², Mina Kim², Jee-Hoon Jung²,

Hwa-ryeong Park-, Mina Kin-, Jee-Hoon Jung-, Ho-Sung Kim¹ ¹Korea Electrotechnology Research Institute, Korea; ²Ulsan National Institute of Science and Technology, Korea

D22.3: Research on Common Mode Voltage Suppression of Three-Phase Four-Bridge Matrix Converter Considering Unbalance Inductance

Songtao Huang³, Yougui Guo³, Lie Xu¹, Yu Guo², Yongdong Li¹, Wenlang Deng³ ¹Tsinghua University, China; ²University of Illinois at Chicago, China; ³Xiangtan University, China

D22.4: Modified Bi-Directional Z-Source Breaker with Reclosing and Rebreaking Capabilities Swati Savaliya, Baylon Fernandes Indian Institute of Technology Bombay, India D22.5: High-Performance and Cost-Effective Single-Ended Induction Heating Appliance Using New MOS-Controlled Thyristors Hector Sarnago, Oscar Lucia, Jose M. BurdÃo

Universidad de Zaragoza, Spain

- D22.6: A Novel Platform for Power Train Model of Electric Cars with Experimental Validation Using Real-Time Hardware in-the-Loop (HIL):,a Case Study of GM Chevrolet Volt 2nd Generation Khalil Algarny², Ahmed Abdelrahman², Mohamed Youssef¹ ¹Univeristy of Ontario Institute of Techology, Canada; ²University of Ontario Institute of Technology, Canada
- D22.7: A New Control Method for Series Resonant Inverter with Inherently Phase-Locked Coil Current with Induction Cookware Applications Jong-Woo Kim, Moonhyun Lee, Jih-Sheng Lai Virginia Tech, United States
- D22.8: Lifetime-Based Power Routing of Smart Transformer with CHB and DAB Converters Vivek Raveendran¹, Markus Andresen¹, Marco Liserre¹, Giampaolo Buticchi² ¹University of Kiel, Germany; ²University of Nottingham Ningbo China, China
- D22.9: Soft-Transient Modulation Strategy for Improved Efficiency and EMC Performance of PFC Converters Applied to Flexible Induction Heating Appliances Mario Pérez-Tarragona, Héctor Sarnago,

Mario Pérez-Tarragona, Héctor Sarnago, Oscar Lucia, Jose M. BurdÃo *Universidad de Zaragoza, Spain*

- D22.10: Single-Phase to Two-Phase Power Converter Bruna Seibel Gehrke, Cursino Brandao Jacobina, Nayara Brandao de Freitas, Antonio de Paula D. Queiroz Federal University of Campina Grande, Brazil
- D22.11: Power Rectifier Based on Open-End Converter with Floating Capacitor Under Non-Sinusoidal and Unbalanced Input Alan S. Felinto, Cursino B. Jacobina, João P.R.A Mello, Gregory A. A. Carlos, Ivan da Silva

Federal University of Campina Grande, Brazil

D22.12: Doubly-Fed Machine with Wireless Power Transfer Ability

Jun Lee, Jung-Ik Ha Seoul National University

D23: Switchmode Power Supply & Battery Applications

Notes

Power Electronics Applications

Sombuddha Chakraboty, Texas Instruments

- D23.1: A Battery Management System Adapted for an Energy Harvester with a Low-Power State of **Charge Monitoring Method and a 24 Microwatt** Intermittently Enabled Coulomb Counter Jun-Ichi Nagata, Kenichi Kawasaki, Hirovuki Nakamoto Fujitsu Laboratories Ltd., Japan
- D23.2: **Control Method of Input-Parallel and Output-Series Connected Inverters for Plasma Generator** Hyo Min Ahn², Won-Yong Sung², Minkook Kim², Byoung Kuk Lee², Seung-Hee Ryu¹, Chang-Seop Lim¹ ¹New Power Plasma Corporation, Korea; ²Sungkyunkwan University, Korea
- D23.3: **Optimized Modulation Scheme for Dual Active** Bridge DC-DC Converter Chaochao Song, Alian Chen, Jie Chen, Chunshui Du, Chenghui Zhang Shandong University, China
- D23.4: Two-Phase Three-Dimension Common Inductor LLC Resonant Converter with Automatic Current Sharing Hongliang Wang, Yang Chen, Bo Sheng, Yan-Fei Liu,

P.C Sen Queen's University, Canada

- D23.5: **Design of Fast Charging Technique for Electrical Vehicle Charging Stations with Grid-Tied Cascaded H-Bridge Multilevel Converters** Amirhossein Moeini, Shuo Wang University of Florida, United States
- D23.6: Enhanced SOH Balancing Method of MMC Battery **Energy Storage System with Cell Equalization** Capability

Zhan Ma, Tiangu Hao, Feng Gao, Nan Li, Xin Gu Shandong University, China

Notes

CONFERENCE AND APEC. 2+18

01.10
D01.11
D01.12
D01.13
D01.14
01.10 D01.11 D01.12 D01.13 D01.14 D01.15 D01.16
01.16

D01.9 D02.8 DO D02.7 D02.6 D02.5 D02.4 ${
m co}$ D02. D02.2 D02.1

D04.6 D03.8 D04.5 D03.9 D04.4 D03.10 D03.11 D03.12 D04.3 D04.2 D04.1 D03.13 D03.14 D03.15 D03.16 D03.17

D06.4 D07.1 D06.5 D06.12 D06.13 D06.14 D06.15 D06.16 D06.17 D06.18 D06.6 D06.7 D06.8 D06.9 D06.10 D06.11

D08.3 D10.3 D08.4 D10.2 D08.5 D10.1 D08.6 D09.7 D08.7 D09.6 D08.8 D09.5 D09.1 D09.4 . D09.2 D09.3

D13.11
D13.10 D13.11
D13.9
D13.8
D13.7
D13.6
D13.5
D13.4

D15.5 D15.7 D15.8 D15.9 D15.10 D15.11 D15.12 D15.13

D18.1 D18.2 D18.3 D18.4 D18.5 D18.6 D18.7 D18.8

D16.8 D16.7 D16.6 D16.5 D16.4 D16.3 D16.2 D16.1

D19.4 D19.3 D19.1 D19.2 D18.9 D18.10 D18.11

D19.5

D21.2 D21.3 D21.4

D23.6 D23.5 D23.4 D23.3

Dialogue Sessions

Floor Plan

D22.2 D22.1 D21.6

D21.1

D21.5

D22.11 D22.12 D23.1 D23.2

D22.6 D20.7 D20.8 D22.5 D20.9 D22.4 D22.3 D20.10

Hemisfair

Ballroom

D22.7

D22.8

D22.9 D22.10

D20.6 D20.5 D20.4 D20.3 D20.2 D20.1 D19.7 D19.6

D17.6 D17.7 D17.8 D17.9 D17.10 D17.11 D17.12 D17.13

D14.9 D17.5 D14.10 D15.6 D14.12 D17.4 D17.3 D17.2 D15.1 D17.1 D15.2 D16.9 D16.10 D16.11 D15.3 D15.4

D14.7 D14.6 D14.5 D14.4 D14.3 D14.2 D14.1

D14.8

D11.8 D11.9 D12.4 D12.5

D11.7 D12.1 D12.2 D12.3

Dialogue Sessions Floor Plan

D02.17

D03.1

D03.2

D03.3

D03.4

D03.5

D03.6 D04.8

D03.7 D04.7

D05.4

D05.3

D05.2

D04.9 D04.10 D05.1

D05.5

D05.6

D05.7

D05.8 D07.6

D05.9

D06.1 D06.2

D06.3

D07.9

D07.8

D07.7

D07.5

D07.4

D07.3

D07.2

D07.10 D07.11 D07.12 D07.13 D07.14 D07.15 D08.1

D11.6

D11.5

D11.4

D11.3

D11.2

D11.1

D10.5

D08.2 D10.4

D02.16

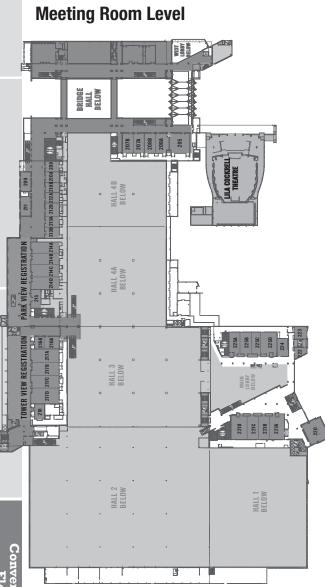
D02.11 D02.12 D02.13 D02.14 D02.15

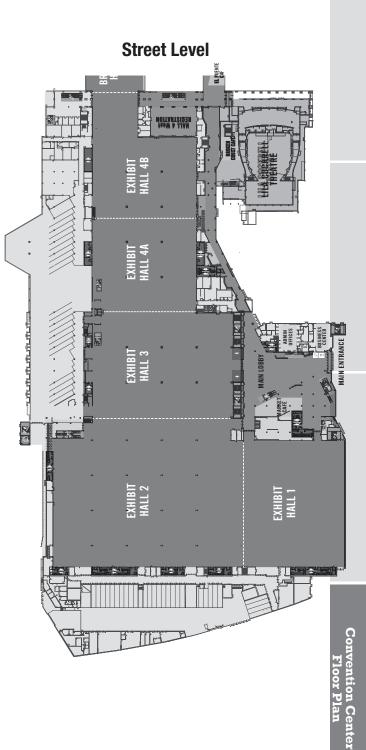
D01.1

D01.2

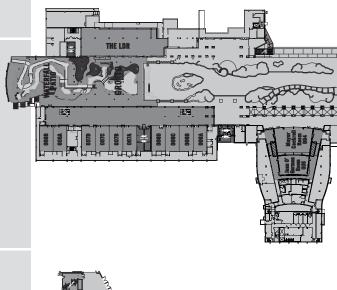
D01.3

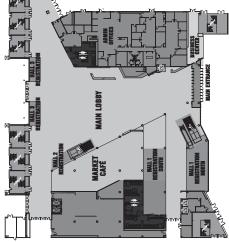
D01.4 D01.5

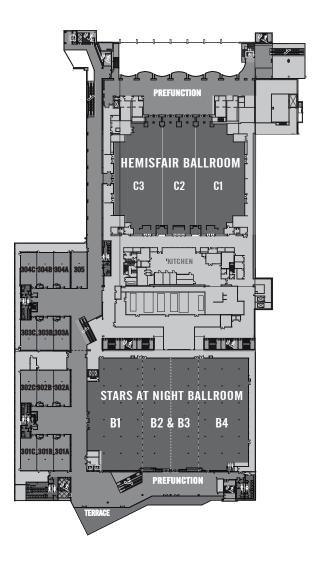

D01.6


D01.7

D01.8


D02.9 D02.10


Convention Center Floor Plan



River Level

Ballroom Level

Convention Center Floor Plan

THE PREMIER GLOBAL EVENT IN APPLIED POWER ELECTRONICS[™]

2018 Exhibitor Directory

APEC 2018 Exposition

The APEC 2018 Exposition will provide conference attendees an exceptional opportunity to examine and touch the product offerings of the leading suppliers to the power electronics industry. The newest components, power supplies, design tools and services will be on display, and you can meet and talk to application experts at each booth. The exhibition is sold out again this year, so you will be sure to find something of interest in every corner of the hall. For in-depth product details, the Exhibitor Seminars on Tuesday afternoon and Wednesday morning will offer product presentations and a question and answer forum for present and future products and services. Additional highlights of the conference include the Exhibit Hall Welcome Reception on Monday evening followed immediately at 8:00 p.m. by the 32nd Annual MicroMouse Contest, then on Tuesday at 5:00 p.m. the Rap Sessions covering topics of interest in power electronics.

NEW this Year in the Exhibit Hall – **Campfire Connections Access**

Relax around the campfire and engage in roundtable discussions with peers in The HUB, booth #931.

> Tuesday. March 6 2:45 p.m. - 3:15 p.m. Women in Engineering

> Wednesday, March 7 10:00 a.m. - 10:30 a.m. Magnetics

In The HUB this year, join us for a Virtual Reality Experience Sponsored by Wurth, our Prize Give-a-way and join us for a custom coffee drink from our Barista.

A thank you goes to our long-term APEC sponsors the Industrial Applications & Power Electronics Societies (IAS & PELS), and the Power Sources Manufacturers Association (PSMA) for their commitment and support of APEC 2018. In addition, a special thanks goes to our conference partners who have provided additional financial support to make your conference experience even better. Please enjoy!

Table of Contents Page

APEC 2018 Exposition

APEC 2+18 CONFERENCE AND EXPOSITION 182

CONFERENCE AND APEC. 2+18

183

Exposition Information

The Exposition will open on Monday, March 5 when the Plenary Session concludes.

Exposition Hours

Monday, March 5 5:00 p.m. – 8:00 p.m.
Tuesday, March 6 12:00 p.m. – 5:00 p.m.
Wednesday, March 7 10:00 a.m. – 2:00 p.m.

Admission

Entry is granted to persons 18 or older with any APEC badge, including the free "Exhibits Only" badge which also grants admission to the exhibitor seminars, plenary session, micromouse contest and rap sessions.

Exposition Functions

EXHIBIT HALL WELCOME RECEPTION

The Welcome Reception will be held in the Exhibit Hall on Monday, March 5, from 5:00 p.m. until 8:00 p.m. Come join us for a Taste of San Antonio! Registered spouses and guests are welcome.

EXPOSITION LUNCH AND BREAKS

Lunch will be served in the Exhibit Hall on Tuesday from 12:00 p.m. - 1:30 p.m. and on Wednesday from 12:30 p.m. - 2:00 p.m. free of charge to all who have access to the exhibit hall. Lunch will be on your own on Sunday and Monday.

The Wednesday morning coffee break will be served in the Exhibit Hall from 10:10 a.m. to 10:40 a.m. The Tuesday afternoon coffee break will be in Exhibit Hall from 2:45 p.m. to 3:15 p.m.

Exposition & Giveaway

During all three days of the Exposition we will be giving out prizes. At registration everyone (exhibits only registrants and exhibitors included) will be issued a raffle ticket that you will put in a drop box located in Booth 931. This will be good for all three days of raffles during the exposition. **Exhibitor Seminars**

as of 2.15.18

Exhibitor Seminars – Session #1

Tuesday, March 6 – 1:30 p.m. – 2:00 p.m.

Synopsys

R00M 214A

Latest Saber Modeling and Simulation Features for Power Electronics

PRESENTED BY: Alan Courtay

The Synopsys Saber simulator continues to address the need for accurate and efficient models in power electronics. The library of Saber power MOSFET tools has recently been extended to cover a wide range of manufacturers and technologies including Silicon Carbide and Gallium Nitride. Lessons learned from characterizing devices based on datasheets and an assessment of the quality of SPICE models from various manufacturers will be shared. In addition, the latest Saber release introduces a new battery modeling tool focused on Lithium-Ion chemistries and a faster periodic AC analysis (PAC) to characterize switch mode power converters in the frequency domain. A peek at the upcoming Saber BJT modeling tool will also be given.

.....

Littelfuse

R00M 214B

The Path to Predictable, High-Volume, High-Yield Manufacturing of SiC Devices

PRESENTED BY: By: Corey Devalsingh *(Littelfuse)*, Andy Wilson *(X-Fab)*, Sujit Banerjee *(Monolith Semiconductor)*

Making the next generation of silicon carbide (SiC) devices like MOSFETs and Schottky diodes more affordable depends on the ability to produce them in high volumes with high yields predictably. The first steps on the path toward this goal have been making the transition from 3 inch and 4-inch SiC wafers to 6-inch SiC wafers and developing design and process techniques that are compatible with processes in a silicon CMOS fab. More than 90 percent of SiC device processes are compatible with processes already available in a silicon CMOS fab. Integrating the process flows for silicon and SiC wafers and running them in parallel offers chip producers enormous economies of scale. This approach has already proven successful in the production of 1200 V SiC MOSFETs and Schottky diodes in an automotivequalified 150 mm CMOS fab owned by X-FAB Silicon Foundries. The devices produced are not only highly manufacturable but display superior device performance, gate oxide reliability, and robustness.

Magnetics

R00M 214C

APEC 2018 Expositior

Practical Considerations with Core Geometry in Inductor Design and New Products

...........

PRESENTED BY: Sam Davis

Magnetics will be presenting on both our latest materials and products as well as up and coming products to be released in the near future. We will also be continuing our study of core geometry and how that impacts core performance. Last time, cores of various geometry, size and permeability were tested using a standardized testing method used by Magnetics in order to find offsets in core performance. This time, inductors using a variety of core geometries will be designed to a specific inductance under load to further distinguish offsets in performance and to compare with last year's findings. The cores chosen for the study all have a similar inductance factor which will act as a constant for the study since that parameter is only dependent on geometrical properties given the same material and permeability.

Power Integrations ROOM 214D

Digitally-Controlled Off-Line Flyback that Exceeds DOE (6) Efficiency for Wide Range and USB PD Power Supplies

PRESENTED BY: Amruta Patra

Synchronous rectification and quasi-resonant operations are well known techniques for increasing power supply efficiency. Achieving high efficiency with a highly variable output voltage is substantially more difficult due to transformer optimization, reflected voltage limitations and SR FET timing constraints. This presentation describes a 40 W off-line flyback power supply design that maintains flat efficiency across the load range, meeting all international standards for power supply efficiency. The presentation will cover power stage and magnetics design, implementation of the control interface and EMI optimization for open frame applications, field configurable power, and adapters requiring USB PD with PPS compliance.

Mouser Electronics

R00M 217A

Robust Piezo Actuator Solution for Innovative HMI Haptic Feedback

PRESENTED BY: Matt Reynolds *(EPCOS)*, Kelly Griffin *(Texas Instruments)*

The new PowerHap[™] piezo actuator with haptic feedback and integrated sensor functionality from TDK Corporation is a

compact and innovative actuator that significantly enhances the sensory experience of the human machine interface. The PowerHap Piezo actuator is robust and powerful enough to operate in hostile, low-visibility and noise-filled environments. With integrated sensors, the actuator features unrivalled performance in terms of acceleration, force and response time, and thus offers an unprecedented quality of haptic feedback. The presentation will also discuss haptic feedback trends and how multilayer piezo plate technology can increase the user experience while remaining cost-effective.

Coilcraft ROOM 217B

ROOM 21/B

Power Inductor Trends

PRESENTED BY: Len Crane

Coilcraft introduces power inductors optimized for high frequency switching, high ripple current, and high power density. This presentation discusses the new high-performance materials and features of these inductors. New Coilcraft inductor families include XEL for high frequency, XTL for high inductance, SRT for high current and power density, and XAR designed for integrated packaging. This presentation will demonstrate how these inductors meet the challenges of today's changing technologies and applications.

Panasonic

R00M 217C

Gate Driving Method and New Application for Exceeding the Si limit with X-GaN

PRESENTED BY: Tom Higuchi

Let's start discussion of GaN implementation since X-GaN qualified proper reliability. You can see that the X-GaN's gate drive method is not difficult, after this seminar. You will discern how to drive X-GaN using generic Gate Driver IC. The importance of schematic and routing are defined in order to be maximized the benefit of X-GaN high performance. The suitable topology and application for X-GaN are illustrated. Expansion to Power Supply, AC-Adapter and Inverter is expected in the future. Don't miss next industry standards coming within reach of your hands.

Navitas Semiconductor ROOM 217D

GaNFast to Higher Efficiency

PRESENTED BY: Dan Kinzer

GaN's device-level performance is 5-10x better than that of Si for key switching and loss figures of merit. This offers a benefit in hard-switching topologies but the real value is to use mono-

lithic integration of FET, drive and logic to operate 5x, 10x or 20x faster in soft-switching circuits. GaN Power ICs exploit not only GaN's advances like RDS(ON) QG, QOSS, QRR, but also cut losses by enhancing switching speed and improving gate control. A study of PFC reference designs ranging in power from 100 W to 3.2 kW, with CrCM boost. Totem-Pole and interleaved topologies, and switching frequencies from 100 kHz to 1MHz is presented.

Exhibitor Seminars – Session #2

Tuesday, March 6 – 2:15 p.m. – 2:45 p.m.

Ltec Corporation

R00M 214A

APEC 2018 Exposition

Predict Wide Bandgap Power Device Technology **Trends Through Teardowns, and Deep Analysis**

PRESENTED BY: Louis Burgyan

Analyze the past to predict future trends and gain competitive edge! Having examined hundreds of devices, LTEC engineers identify essential construction details of SiC and GaN semiconductor technologies and link specific findings obtained from physical device de-construction, materials, and electrical analysis to key performance parameters and potential reliability concerns. Attributes essential to achieving high temperature operation and improved short-circuit survival are revealed. Various technologies and associated scaling trends are discussed, including their impact on performance and cost. This presentation offers "hard to access" knowledge base essential to the development of power electronic systems.

..... SIMPLIS Technologies, Inc.

ROOM 214B

Design Verification using Monte Carlo, Sensitivity, and Worst-Case Analyses in SIMPLIS

PRESENTED BY: Matthew Fortin and John Wilson

As the pressure to reduce design cycle time builds, the use of simulation to highlight and expose design flaws before building the first prototype becomes essential. In this seminar, we begin a process of design verification first employing the timetested Monte Carlo analysis. Next, we perform sensitivity and worst-case analyses using standard built-in Design Verification Module (DVM) functions. Finally, we show how to automatically change schematic component values to use statistical distribution functions from the sensitivity tolerance definitions, including those of circuit elements that employ SIMPLIS' new ability to describe the digital behavior of a SIMPLIS subcircuit with user-defined C/C++ code.

Transphorm

R00M 214C

Reference Designs Kick Start Reliable High-voltage GaN Application Development

PRESENTED BY: Philip Zuk, Vice President of Technical Marketing, Transphorm

The power electronics industry's adoption of high-efficiency. high-reliability Gallium Nitride (GaN) is increasing. Yet, to many engineers developing power systems, GaN remains a new technology presenting new design challenges. Transphorm stands as one of the only high-voltage GaN manufacturers with customer products in production. Based on those projects as well as its own R&D, Transphorm holds a unique understanding of effective design methods that properly leverage GaN for optimal performance and system lifespan. Transphorm now extends that knowledge to engineers via various reference designs. Learn how to kick start your high-voltage application designs with Transphorm, and join the GaN Revolution!

United Chemi-Con Inc. R00M 214D

Advanced DC Link Capacitor for 48V inverter of MHV

.....

Presented By: Tony Olita and Toshihiko Furukawa

The life requirement of DC Link capacitors mounted on the invertor is one of key parameter to maintain the inverter efficiency. Less efficiency of the inverter because of the degradation of the capacitors will impact on reducing of MPG and increasing of CO2. In this seminar, the life requirement for DC-Link Capacitor and the life prediction with multiple types current profiles under the typical temperature profile will be presented. Also, advanced DC-Link capacitor products line up will be presented.

STMicroelectronics

R00M 217A

Digital Combo Multi-mode PFC and Time-shift LLC Resonant Controller

PRESENTED BY: Rosario Attanasio

STNRG011 is a new digital controller in an O20 package that includes a multi-mode (transition-mode and DCM) PFC controller, a high voltage double-ended controller for the LLC resonant half-bridge, an 800 V-rated startup generator and a sophisticated digital engine, that manages the optimal operation of the three blocks. The digital algorithms are stored into an internal ROM memory while a programmable NVM (non volatile memory) allows a wide configurability and calibration of the key parameters for applications.

RTDS Technologies Inc.

R00M 217B

APEC 2018 Exposition

Real Time Simulation: The Essential Tool for Both Low and High Power Applications

PRESENTED BY: Dr. Ehsan Tara

Power electronics-based high power conversion systems are an integral part of our power system. A typical step in the development of these high power conversion systems is the testing of the controller. If the rating of the system is reasonable (in the kW range), it is common to use a real system for testing both the power stack and the control system. However, the trend from industry is larger and riskier each day, with HVDC ratings in the hundreds of MW or even GW range. These systems are impractical to test with physical replicas. Additionally, these systems are meant to be interfaced with an existing utility grid, containing many elements with their own characteristics. Closed-loop testing with the RTDS Simulator has been established as the de facto method for testing the controls of these high power systems for more than 20 years, with the RTDS Simulator used for the Factory Acceptance Testing for most major HVDC and FACTS projects. Real time simulation offers a highly flexible and accurate solution for simulating not only the power stack and power electronics in question, but also the interconnected AC system. This presentation explores the importance of real time simulation in these areas and gives some real world examples of the benefits.

PowerSim

ROOM 217C

Integrating PSIM & SPICE for Device Level and System Level Simulation

PRESENTED BY: Albert Dunford

The new PSIM release includes a built-in SPICE engine and support for LTspice simulation, with support to SiC/GaN models. While PSIM excels in system level and control simulation, SPICE is great in device level simulation. The combined platform makes the best use of both engines in a complementary way. In addition, PSIM provides the dual-model definition functionality, making the transition seamless between PSIM and SPICE simulation. With SPICE integration, PSIM is now a one-stop solution for all your simulation and design needs, including power supplies, motor drives, analog & digital control, loss calculation, and DSP code generation.

Adaptive Power Systems ROOM 217D

Regulatory Power Compliance Testing Made Easy

PRESENTED BY: Herman Van Eijkelenburg

AC power products that operate on utility power must be designed to withstand power grid fluctuations and anomalies that can occur on most grids. This is especially true for CE marked products destined for the European market at CE marking implies meeting a variety of AC power related IEC 61000-4 immunity test standards as part of the EMC requirements. This session will illustrate the built-in IEC 61000-4 test capabilities of modern day programmable AC power source that allow design engineers to perform pre-compliance testing during product development, greatly increasing the chances of the product passing these requirements and avoiding costly late-inlife design changes.

Exhibitor Seminars – Session #3

Tuesday, March 6 – 3:00 p.m. – 3:30 p.m.

Abstract Power Electronics

R00M 214A

Primate Power™ Sources Use SiC Devices to Improve Efficiency & Response Time

PRESENTED BY: Jeff Reichard

High efficiency, high bandwidth power sources are what engineers need in the labs and what OEMs can use to improve products. Primate Power[™] achieves this and more with the use of SiC devices. Reduced losses allow for higher switching speeds that improve load and source management. The Primate Power[™] Sources are compact, rugged and versatile with power ranges of 4 kW through 300 kW and voltages up to 690 VAC / 1200 VDC. Abstract Power Electronics introduces the power source that is ideal for testing batteries and high-speed motors, simulating grids, and much more.

OPAL-RT Technologies ROOM 214B

How to Use Real-Time Simulation for a Better, Modern, and Interactive Teaching Experience for Power Electronic and Electric Motors

PRESENTED BY: Christophe Brayet

This topic demonstrates how to use Real-Time Simulation for a Better, Modern, and Interactive Teaching Experience for Power Electronics and Electric Motors. Real-time simulation laborato-

ries are introduced here to enhance the teaching experience and add the "User-In-The-Loop" concept. Students interact with real equipment and the simulated systems in real-time via a panel and the "user-interaction-bandwidth" is taken into account. This allows for a better understanding of phenomena, and a visualization of critical system behaviors without the worry of damaging physical material. Universities around the world are rapidly adopting HIL technology in their programs in order to leverage their engineering education. Based on years of research and experience in power electronics and power system, and listening to the users' needs, OPAL-RT offers Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) Teaching Laboratories to universities in an efficient, reliable and affordable way.

Helix Semiconductors

R00M 214C

APEC 2018 Expositior

Helix Semiconductors – A New Breed of Energy-Efficient Power Supply Solutions

PRESENTED BY: Harold A. Blomquist

With electricity grids around the globe burdened to the brink of failure, massive energy shortages being predicted (due to all of the connected devices on the internet of things), multiple government entities enacting strict energy efficiency standards. and vampire loads wasting more than \$80 billion per year, the time is now to address the way power conversions are being made. Helix Semiconductors is focused on addressing the global initiatives for more efficient power supplies through its core energy-efficiency technology (MuxCapacitorTM), which takes a different approach to power conversion than traditional methods. Over the entire load range, from low-load to full-load conditions, Helix's MuxCapacitor converts mains power worldwide to virtually any lower voltage with over 95% efficiency. Helix's technology enables the highest power density through capacitive power conversion and capacitive isolation. This capacitive conversion voltage-reduction technology makes possible best-in-class energy conversion efficiencies across the full load range, and especially while the system is in power down (standby and vampire power) and lightly loaded operation. Applications that will benefit from Helix's MuxCapacitor technology include everything from IoT sensors and gateways - and all of the things they connect - to external power adapters and chargers, white goods user interfaces, wireless access points, VoIP phones, telecom and data center line cards, electric vehicles, solar converters, and more.

FTCAP GmbH

R00M 214D

Professional Capacitor Solutions for severe conditions: New approaches for dealing with the reduction of parasetic inductances, improved humidity resistance and dedicated automotive projects.

PRESENTED BY: Dr. Thomas Ebel

FTCAP capacitors are used in many products where a layperson would not expect them at all. For example, they are an integral part of autonomous defibrillators, hybrid race cars, solar ships and computer tomographs. Uninterrupted power supplies are another example. An important area is medical technology. Currently there is large potential in renewable energies – capacitors are installed for example in wind turbines and photovoltaic systems and are increasingly in demand in view of the energy transition. The same applies to the large growth market for electromobility. The presentation provides information on the potential applications of FTCAP capacitors in different industries.

Alpha and Omega Semiconductor Inc. ROOM 217A

Latest Technology for High-Efficiency Power Conversion

PRESENTED BY: Peter H. Wilson

Power conversion is an essential element in today's society from cloud computing to mobile devices. Higher efficiency demands are pushing power technology. AOS offers a full line of power technology from discrete devices (MOSFET, IGBT, and GaN), integrated solutions such as Power IC, and digital power to enable innovative solutions.

Nichicon (America) Corp

IICNICON (AME)

ROOM 217B

What Hybrid Capacitors Can Do For You

PRESENTED BY: Mark Gebbia

Nichicon Corporation has introduced a new line of Conductive Polymer Hybrid Electrolytic Capacitors that will allow designers to develop smaller more compact products. Hybrid Capacitors are ideal for applications where standard polymers or aluminum electrolytics are not the ideal choices. Polymer Electrolytics are great for increased current capabilities and longer life in smaller case sizes, but have limitations that prevent them from being widely accepted. Hybrid capacitors address these issues making them ideal for applications where polymer or aluminum electrolytics are not acceptable. This seminar will highlight the advantages hybrid aluminum electrolytic capacitors have compared to standard aluminum electrolytic and aluminum polymer capacitors. We will demonstrate how hybrid capacitors have characteristics of both aluminum electrolytic and polymer capacitors.

Infineon Technologies

ROOM 217C

New Gate-Driver IC with Excellent Ground-Shift Robustness

PRESENTED BY: Hubert Baierl

In conventional low-side gate-driver ICs, high current transients may cause ground shift potential between the driver IC and controller IC, causing false triggering or failure of the gate-driver IC. Infineon Technologies is announcing a robust and small size solution to this common problem. This new driver IC features a true differential input, to isolate the input stage from common mode ground shifts and enhance switching speed as well as reliability in hard-switching applications, especially when using MOSFETS with kelvin source packages or in low-cost PCBs with long distance between the gate-driver IC and the control IC.

.....

Mersen

R00M 217D

Safety and Reliability for Power Electronics

PRESENTED BY: Kian Sanjari

Session presents Mersen's commitment to develop industryleading technologies to improve efficiency and reliability of power electronics equipment. Key topics include an Overview of Fast Acting Power Semiconductor Protection Fuses, plus an introduction to innovative hybrid DC overcurrent protection devices for EV applications. We will explain how Air and Liquid Cooling solutions provide thermal protection for semiconductor components and that efficient cooling is key to long term reliability and performance of fast switching semiconductor components. We will also present how Laminated bus bars provide the most efficient connection between various components, thus limiting parasitic inductance, improving ease of assembly and integration while minimizing wiring errors and costs.

Exhibitor Seminars – Session #4

Tuesday, March 6 – 3:45 p.m. – 4:15 p.m.

Pin Shine Industrial Co., Ltd. ROOM 214A

Transformer Applications: Research on Vermolding Technics of Composite Materials

PRESENTED BY: Leo Liou

The main design concept of overmolding is to integrate insertmolding technology to combine the substrate and composite materials through second molding or multiple molding process. The advantages are as following: overmolding process can be used to different materials; including copper wire, silicone steel, core, metal shell and other composite items. Overmolding process increases the distance of the creepage and enhances product performance requirement within a limited space. Overmolding parts have waterproof and dustproof properties; while engineering plastic has high temperature, chemical (oil) and hydrolysis resistance properties. By combining these properties, it allows overmolding products to work in harsh environments.

.....

Ridley Engineering, Inc.

R00M 214B

Prototype In 1 Day With SwitchBit®

PRESENTED BY: Dr. Ray Ridley

Generating the first working prototype with full power and custom magnetics takes months of trial and error. What if you could reduce this process to just one day? In this seminar, we will demonstrate our combined approach. Learn how we use advanced software, specialized high-frequency prototyping boards, and unique measurement tools to achieve the fastest working prototype results in the industry.

CogniPower, LLC ROOM 214C

Pushing Flyback Converters Above 65 Watts and the PFC Question

PRESENTED BY: Tom Lawson

Modern flyback converters are efficient and cost-effective to well over 100 Watts. Power Factor Correction is required in many higher power applications. Alternative techniques are considered for Power Factor correction with a focus on the CogniPower Compound Converter for low cost, high efficiency and near-ideal Power Factor Correction.

Hoi Luen Electrical Manufacturer Co., Ltd. R00M 214D

Mighty solutions of Fully Insulated Wire (FIW) and the Insulation System

PRESENTED BY: Calvin Ku

Fully Insulated Wire (FIW) with high thermal class, extremely thick high voltage layer and zero-defect insulation compliance with IEC 60317 and 60950, is the next generation wire for miniaturized transformers at lower cost and higher insulation resistance. Embracing high thermal class, very small overall diameters, tight bending radii and high level flexibility, it's the best alternative to substitute traditional triple insulated wire.

NH Research, Inc. (NHR)

ROOM 217B

APEC 2018 Exposition

NHR's New AC & DC Regenerative Source/Loads

PRESENTED BY: Martin Weiss

NH Research is an industry-leading test equipment manufacturer exhibiting a number of our regenerative test solutions including grid-simulators. AC Sources. 4-Quadrant AC Loads. and Battery Emulators. Regenerative systems save money as they reduce the daily operating costs associated with product testing. This session covers key selection factors, common applications, built-in measurement features, and performance characteristics of these types of testing instruments giving engineers and laboratory managers the information required and confidence that the right testing solution is selected for their application testing needs.

SBE. Inc.

R00M 217C

Advanced Developments for High Temperature, High **Efficiency, and Greater Working Voltages of Capacitors**

PRESENTED BY: Michael Brubaker

Next generation power converters require high performance capacitors and bus structures in the enabling "ecosystem" for both advanced silicon and silicon carbide devices. High power applications demand increased efficiency, which requires a very low inductance DC link to enable fast switching at maximum DC voltage. Note that paralleling of switch modules is often necessary to achieve the desired current rating and inductance, which requires a fully integrated capacitor/bus. DC link capacitors must also shift to higher operating temperatures to reduce the cost and volume of cooling infrastructure. Finally, increasing device voltages to further improve efficiency requires higher voltage DC link capacitors. SBE has developed answers to all of the capacitor needs outlined above. SBE pioneered the fully integrated capacitor/bus approach with proprietary technology for surface mounting of optimal form factor capacitors directly to bus structures with demonstrated commutation inductances of less than 5nH. SBE has partnered with DuPont Teijin films to address the high temperature film capacitor gap with a solution that can operate at 150C hotspot using their PEN HVTM material. Finally, the unique SBE Power Ring form factor supports higher voltage applications where very light metallization strategies can be utilized without creating excessive equivalent series resistance.

InnoCit LLC

R00M 217D

Advanced WBG-based Converters

PRESENTED BY: Mehdi Ferdowsi

This seminar covers some of the challenges that power electronic engineers face once they start working with wide bandgap devices. Some of the advantages of GaN switches are lower specific RDS(on), faster switching, lower gate drive voltage, reduced gate charge, lower parasitic capacitances and inductances, and zero reverse recovery. Therefore, they offer higher switching frequency, higher efficiency, and smaller footprint. Despite their many advantages, several challenges lie in the deployment of such devices.

APEC 2018 Exposition

Exhibitor Seminars – Session #1

Wednesday, March 7 – 10:30 a.m. – 11:00 a.m.

Richardson RFPD

R00M 214A

Biasing Your Gates – How to Simplify Your Power Switching Applications with RECOM DC/DC Converters

PRESENTED BY: Matthew Dauterive, Justin Hill, Peter Victoria

.

Controlling power switching transistors requires specific voltages to be applied to the gate of the transistor. The required voltage will depend on the chemistry of the transistor - IGBTs for example, typically require +15V across the gate to "turn on" the transistor. In many applications, unwanted turn-on of the gate because of the Miller capacitance can occur, and often the most practical method to prevent this is to apply a negative voltage to the gate. For many IGBTs, the ideal value is -9V. This means that for a half-bridge configuration where there is a high-side and low-side transistor, four separate power supplies would be necessary. With RECOM's asymmetric output DC/DC converters, this reduces the need to only two power supplies. RECOM has high-isolation, asymmetric DC/DC converters for IGBT (+15V/-9V) and SiC (+20V/-5V & +15V/-3V). RECOM also has high-isolation converters for the latest GaN transistors which typically only require a single 6V supply for the gate. RECOM has also introduced a new reference design (R-REF01-HB) that will allow designers to evaluate different types of transistors to find the best fit for their application. The designer can solder either TO247-3L or TO247-4L transistors of their choice to the board and the corresponding RECOM DC/DC converters which are included with the board. In addition to being able to guickly evaluate the performance of the application, the complete design files are open-sourced for ease of implementation into the final design. The design can be used with voltages up to 1kV and up to 10A of current and because the signal ground is galvanically isolated from the power ground, any potential up to 2.5kV may be referenced. The board can be configured to several different topologies which can be found in the datasheet.

Tektronix, Inc.

R00M 214B

Half Bridge and Gate Driver Measurements

PRESENTED BY: Wilson Lee

The faster switching transitions on modern power devices has made measuring and characterizing a considerable challenge, and in some cases, impossible. IsoVu technology from Tektronix allows designers to accurately measure half bridge and gate driver waveforms that were previously hidden. During our presentation, we will we discuss the following topics: measurement challenges on gate drivers and half bridges, common sources of measurement error, why a probe's poor common mode rejection can cause misleading and useless measurements and how IsoVu technology has created opportunities in CMTI, ESD testing, and the double pulse test.

NAMICS Technologies, Inc. ROOM 214C

NAMICS New Technology and Products

PRESENTED BY: Ken Araujo

NAMICS is developing the latest cutting edge materials for power modules packages for Die Attach, Insulating Adhesive Film and Liquid Type Encapsulation. In this presentation, we will introduce our development approach for each material. Our Die Attach materials are characterized by a pressureless, low temperature sintering structure providing high thermal and electrical conductivity. They offer outstanding reliability by controlling the modules to handle a variety of power module packages. Future development is focused on a copper sintering type. .The Insulating Adhesive Film is designed to offer low thermal resistance with thin thickness for high thermal conductivity and voltage breakdown for wide band gap applications. Our current material offers 3 W/mK of thermal conductivity and over 4 kV/ mm of breakdown voltage at 50 um thickness. Future development is focused higher thermal conductivity over 10 W/mK. Latest demands for Power Module Packaging require materials to withstand operating temperatures over 200 degree C. To meet these requirements, we are developing a Liquid Encapsulation Compound with a stable resin system at elevated temperature. Our focus is on a new resin system offering high thermal stability while controlling modulus and C.T.E. to meet the rigorous reliability requirements.

APEC 2018 Exposition

APEC 2018 Exposition

Teledyne LeCroy

R00M 214D

Debug and Validate Control, Drive and Motor Performance with a Motor Drive Analyzer

.....

PRESENTED BY: Ken Johnson

Optimization of control systems and drive performance requires calculation of power activity during very short time periods that correspond to the power semiconductor device switching period. The Teledyne LeCroy Motor Drive Analyzer (MDA) provides such power analysis with correlation of power activities to typical control system signals. This session will showcase testing done using the MDA for variable flux electric machine analysis, volt-second sensing control analysis in a Deadbeat-Direct Torque and Flux (Motor) Control (DB-DTFC) and comparison of dynamic losses for various DTFC and Vector field-oriented controlled (FOC) surface and interior permanent magnet motors (SPM and IPM).

TT Electronics

R00M 217A

Resistor Selection for Proper Circuit Operation and Reliability

PRESENTED BY: TOM Morris

This presentation has a goal of educating and informing about the myriad of various resistor types such as wirewound, metal film, carbon film, carbon composition, thick film, networks, etc., their characteristics, and how to properly select them for best performance and optimum cost. Resistors have a myriad of functions in an electronic circuit and the proper resistor selection can be critical not only for normal operating parameters, but also to perform satisfactorily in certain abnormal conditions which could occur.

Wurth Electronics

R00M 217B

How to Use This Stuff Called Ferrite

PRESENTED BY: George Slama

Ferrite cores are used extensively in switching power supplies. With so many manufacturers and a multitude of materials, shapes and sizes to choose from how does the new or practicing engineer select the right core material for a given application? What does the data sheet reveal? How does one compare one core materials to another? This session will be a quick overview of what all those tables and charts in core catalogs mean from a user's perspective.

PowerELab Ltd.

R00M 217C

Optimize Power Supply Design in Minutes for Free – PowerEsim

PRESENTED BY: Dr. Franki Poon

PowerEsim, www.powerEsim.com, is a free tool that seamlessly integrated circuit simulator, transformer/inductor building & simulation tool, thermal simulation, DVT, MTBF, Monte Carlo, Input harmonic and EMI, loop analysis in s and z domain, etc. As a whole it give engineer an virtual environment to build a power supply but do thousands times faster than in real life. Engineer can now wind a real transformer in that virtual environment and immediately see result when they change number of turn of winding method. All result immediately updated when a component changed. No even need to click a "run" button.

.....

HBM Test and Measurement

Rapid Efficiency Motor Mapping and Analysis

PRESENTED BY: Mike Hoyer

Characterizing electric motors has become an important topic in many engineering labs throughout the world. To test and characterize electric motors, many labs have put together systems with multiple pieces of measurement equipment from different suppliers. While these systems may work, they often have high levels of complexity, synchronization issues, limited capability and operate much slower than an optimized system. This presentation will introduce a revolutionary advanced power analyzer specifically designed for dynamic electric motor testing that generates efficiency motor maps in minutes not hours, calculates any desired analysis in real-time including do0 and Space Vector Transformation and records over 50 phases of power measurements plus multiple torque, speed, temperature, strain and vibration signals all in a single mainframe. Producing rapid results significantly boosts productivity and R&D, saving significant time and money enabling one to design, test and produce the most efficient electric motors, better and faster than anyone else.

Exhibitor Seminars – Session #2

Wednesday, March 7 – 11:15 a.m. – 11:45 a.m

Pacific Sowa Corp C/O Epson Atmix Corp ROOM 214A

High U Super Low Core Loss Nanocystalline Powder "KUAMET NC1"

.

PRESENTED BY: Yoshizawa Masahito

APEC 2018 Exposition

Epson Atmix KUAMET[®] series is high performing amorphous powder. NC1 is nanocrystalline powder. The u increases by 10% and core loss decreases by 25% 9A4 is amorphous powder with 15% higher saturation properties. They contribute to longer battery life, prevention of a fever and downsizing in devices. *Compared to our conventional amorphous powder.

.....

pSemi (formerly Peregrine Semiconductor) ROOM 214B

Vertical Integration to Support Next-Generation Power Conversion Solutions

PRESENTED BY: Stephen Allen

pSemi, a Murata company, is bringing together a wide range of technologies which collectively will enable significant improvements in performance, size and cost for next-generation DC-DC converters. This presentation will describe the benefits of vertical integration – combining architectural and process innovations, together with advanced packaging and passive components to enable solutions that drive higher switching frequencies, higher conversion efficiencies, and much smaller form factors – often mutually exclusive goals. Examples will be given from existing and soon to be released products from pSemi, solving real-life problems in power conversion for mobile, computing, datacoms and telecoms applications.

Schunk Carbon Technology GmbH ROOM 214C

Graphite-Based Solutions for (Power) Electronics Cooling

PRESENTED BY: Dr. Sandra Reisinger

Schunk Carbon Technology provides two graphite-based solutions for the electronics cooling industry. The composite, Aluminium Graphite, combines a high thermal conductivity with a low coefficient of thermal expansion and density, to create the ideal thermal management material for high-reliability RF, power and microelectronics applications. Schunk produces a wide range of customized parts with different plating options in various quantities. Our innovative phase change composite, Latent Heat Carbon, allows for effective buffering of temperature peaks as well as energy storage. Its unique production process allows for custom designs at attractive cost with optimal thermal properties tailored to each customer's specific needs.

Zes Zimmer Inc.

R00M 214D

Advancements in PWM Efficiency Power Testing

.....

PRESENTED BY: Robert Emerson

In applications where power conversion takes place and highspeed switching is involved, such as drives and inverters, great care must be taken when measuring power efficiency. A proper measuring system for efficiency must include high frequency response for the switching consumption and also accurately measure the usable power at the fundamental frequency, and do this without error from alias. Come join us and see this solution and the other advances ZES ZIMMER is making in single and multi-phase power analysis.

Plexim

R00M 217C

Rapid Control Prototyping for Power Electronic Systems Using the PLECS Toolchain

PRESENTED BY: Vitalik Ablaev

Plexim creates design tools for the development and testing of power electronic systems. The company's electrical engineering software, PLECS, is widely adopted in industry and academia worldwide. PLECS is a complete power conversion system simulation package that yields robust and fast results. Plexim recently added a real-time simulation platform offering to its portfolio. The RT Box is the most versatile and easy-touse real-time power electronics simulator on the market. With its combination of low round-trip latency, numerical accuracy, scalability, and seamless integration with PLECS, the RT Box is a versatile processing unit for both real-time hardware-in-theloop (HIL) testing and rapid control prototyping (RCP). In this presentation, Plexim's engineers will demonstrate RCP with an RT Box used as a controller exchanging signals with a TI Boosterpack board to spin a small DC motor. See our effortless, transparent workflow of generating real-time code from a PLECS model, deploying it onto the RT Box with one click, and viewing the real-time waveforms with the PLECS scope.

APEC 2018 Exposition

Eaton ROOM 217A

Applications and Benefits of Supercapacitor Technology

PRESENTED BY: Jason Lee

Imagine the possibilities of a long life, maintenance-free energy storage! Join Jason Lee, product manager at Eaton, for a presentation on the benefits and features of supercapacitors, and how they can be utilized in transportation, industrial, energy, medical and computing markets. Learn about key supercapacitor products and differentiators, and hear how supercapacitors can replace or extend the life of batteries in transportation, renewables, grid storage and UPSs.

Sidelinesoft LLC ROOM 217B

NL5 – Circuit Simulator With Ideal Components

PRESENTED BY: Alexei Smirnov

Most electronic circuit simulation tools on the market are based on the SPICE algorithm. It provides high accuracy and fast simulation, with many models of real components available from manufacturers. However, there are many tasks and applications, especially in power electronics, where SPICE does not perform well, and sometimes does not work at all. NL5 Circuit Simulator is proven to be a perfect alternative to SPICE for such tasks. Instead of very complex models of semiconductor devices, it deals with very simple "ideal" components. As a result, simulation is extremely fast and reliable, with practically no convergence problem. Great performance, ease of use, and many unique features developed in more than 25 years, made NL5 a tool of preference for many users all over the world.

Efficient Power Conversion Corporation R00M 217D

GaN Transistors for Efficient Power Conversion

PRESENTED BY: Alex Lidow, Ph.D.

In a post-silicon world, GaN is taking power conversion to the next level. Gallium nitride transistors are rapidly being designed into many power conversion applications. This seminar will provide an update on the state-of-the art in GaN transistor technology, highlighting the latest generation of EPC enhancement-mode GaN products and end-use applications including high power density DC-DC converters, high frequency envelope tracking, LiDAR, and wireless power transfer.

Exhibitor Seminars – Session #3

Wednesday, March 7 – 12:00 p.m. – 12:30 p.m

Iwatsu Electric Company Limited

R00M 214A

Comparison Between Digitizer, Power Analyzer and CROSS POWER Method on Magnetic Material Analysis

PRESENTED BY: Ryu Nagahama

Iwatsu introduces two types of solutions for low power loss devices test measuring core losses following the CROSS-POWER method, power analyzer, and digitizer method. The CROSS-POWER method enable precise and highly accurate measurement embedded minimizing phase error integration in current detector (current probe) and compensating in detection circuit on amplitude and phase.

STAr Technologies, Inc. ROOM 214B

Taurus PDAT – Power Device Analytical Tester

PRESENTED BY: Dan Hicks

Today's GaN and SiC power devices and their ever-increasing slew rates present challenges for manufacturers and end users who want to accurately measure and characterize these devices' AC dynamic performance. STAr Technologies offers a new, innovative test solution to solve this problem with the Power Device Analytical Tester (PDAT). AC performance parameters such as diode recovery, switching energy loss, and rise/fall time can now be accurately and easily measured on GaN, SiC, IGBT, and MOSFET transistors and diodes. Join us for a discussion to see how PDAT makes this possible and how it can benefit you.

West Coast Magnetics

R00M 214C

APEC 2018 Expositior

What Does the Future Hold for Transformers and Inductors In Medium And High Power Applications

PRESENTED BY: Weyman Lundquist

Passive magnetic components that store and transfer energy are typically amongst the largest items in an electronic assembly. There is substantial room for size and cost reduction over the next 5 to 10 years. This talk will examine how far these improvements can be taken. Improvements in magnetic components can be achieved from a number of areas including specialized core materials, winding design, more efficient packaging. This presentation will first focus on improvements that are available through improved packaging and the future for lower loss core materials. Next, parameters that influence winding loss will be presented, for example, different winding techniques and the relative advantages of different types of windings including the patented shaped foil technology developed by WCM and the Thayer School of Engineering at Dartmouth. Finally, the effect of switching frequency on the size of magnetic components and the improvements available today and in the future from going to increased switching frequencies will be presented.

Danfoss Silicon Power GmbH ROOM 214D

Automotive Traction Module Platform

PRESENTED BY: Siegbert Haumann

Based on several years of experience, Danfoss has developed a new, scalable power module platform that lives up to stringent automotive requirements. The module family combines Danfoss' unique technologies; the high performance direct liquid cooling system (ShowerPower[®] 3D), advanced sintering die attach and copper-wire-bonding (Danfoss Bond Buffer[™]) all in utilizing the robust encapsulation method of transfer molding. The platform will allow for flexible use of Si and SiC power semiconductors and will be designed to meet the customers' specific mission profiles. The design will be able to adapt to both 700V and 1200V Si and SiC devices and with battery voltages of 400V or 800V.

ITG Electronics Inc.

R00M 217A

COTS Filters for MIL-STD-461 Applications

PRESENTED BY: Rafik Stepanian

How to mitigate and select a Commercial Off the Shelf (COTS) EMI filter for MIL-STD-461 applications. EMI requirements are often ignored during product and system design. This is because there are typically no set parameters to design an EMI solution during the product design cycle. Design engineers today are tasked to provide low cost COTS EMI filter solutions for military applications to mitigate unwanted EMI emissions. This presentation identifies EMI noise generators, provides EMI test methods, their limits, the failure modes and finally how to choose proper EMI filter solutions that meets the MIL-STD-461 conducted emissions from 10KHz to 10MHz requirements, and maintain filter attenuation up to 1GHZ and above when installed in the system with additional shielding and isolation between input and output terminations.

United Silicon Carbide Inc. ROOM 217B

USCi Gen 3 Cascode and Diode products

PRESENTED BY: Anup Bhalla

SiC devices from USCi have been assessed in Totem-Pole PFC and Vehicle On-board charger applications. Demo boards provided by USCi are discussed in this session, to aid evaluation of the USCi devices. The standard gate drive, excellent switching and Qrr characteristics are shown to result in excellent efficiency performance with ease-of-use. Attendees will get a clear understanding of the device characteristics and how they drive performance in these and similar power conversion applications.

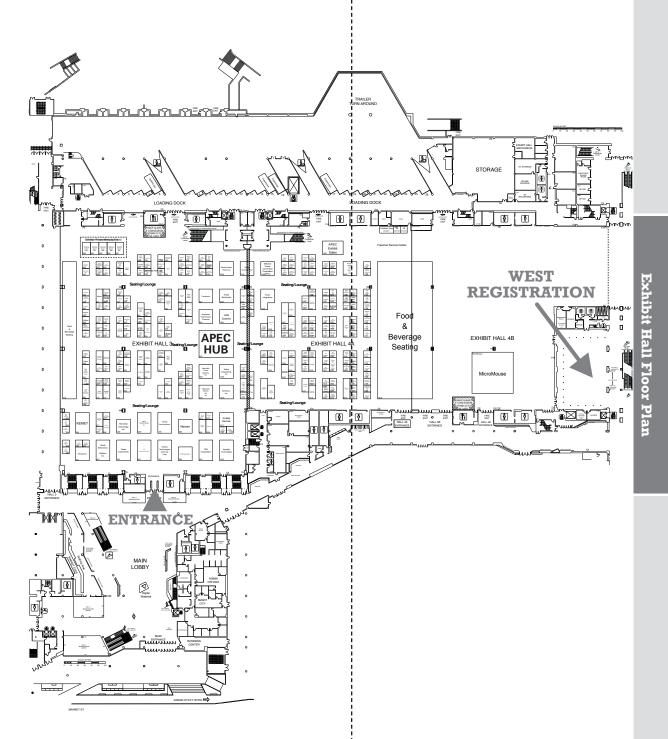
SABIC ROOM 217C

APEC 2018 Exposition

ULTEM UTF120 High Temperature Dielectric Film For Capacitor Applications

PRESENTED BY: Dr. Neal Pfeiffenberger

A new class of high temperature capacitor films, based on polyetherimide (PEI) chemistry, has been developed and electrically characterized versus other common dielectric capacitor films. From fiber optics to high temperature flame resistant personal protection equipment (PPE), ULTEMTM resin has long been used in applications which demand long-term high temperature resistance and dimensional stability. SABIC's ULTEM UTF120 film has been developed to offer excellent handling and processing through common metallization and capacitor winding equipment for both round and squashed capacitors. Additionally, ULTEM UTF120 film can provide stable electrical performance through temperature and frequency, making it an outstanding candidate for DC applications such as electric compressors and DC-DC converters. SABIC is a global leader in diversified chemicals with manufacturing and R&D facilities in the Americas, Europe, Middle East and Asia Pacific. We support our customers by collaborating and developing solutions in key end markets such as electrical and electronics, construction, medical devices, packaging, agri-nutrients, transportation and clean energy.


Mitsubushi Electric US, Inc.

R00M 217D

Latest Power Semiconductor Packaging and Chip Technology

PRESENTED BY: Eric Motto

This session will highlight the latest power semiconductor modules from Mitsubishi Electric, featuring state of the art silicon and silicon carbide chip technology along with new high reliability packaging, to provide increased efficiency and higher performance for industrial, automotive, and alternative energy applications.

Exhibit Hall

Exhibitor Listing as of 2.15.18

Exhibitor Boo	th #	
5S Components 1		
Abstract Power Electronics 1		
AC POWER CORP. Preen.		
ACME Electronics Corporation.		
Acopian Power Supplies		
Adaptive Power Systems		
Advanced Cooling Technologies 1		
Advanced Thermal Solutions Inc 1	1738	
AEM	1644	
Agile Magnetics	1640	
AgileSwitch, LLC 1	1442	
AIR-VAC Automation 1	1719	
Aishi Capacitors1	1359	
All Flex Flexible Circuits and Heaters	310	
Allstar Magnetics1	1445	
Alpha & Omega Semiconductor		
Altair		
AMETHERM, INC	640	
AMOGREENTECH Co., Ltd		
Amphenol Interconnect Products		
Analog Devices 1		
Anhui Specialsun Electronic Technology Co., Ltd		
Anpec Electronics1		
ANSYS, Inc		
APEC HUB		
APEC Prize Stage		
APEC 2019 Exhibit Sales 1		
Apex Microtechnology		
APM Technologies Dongguan Co. Ltd		
AVX1		
B&K Precision.		
Baknor Thermal Management		
BH Electronics		
BMI1		
Brownsburg Electronik		iπi
CAEN Technologies		Exh
CalRamic Technologies, LLC		
Celem Power Capacitors		lit
		R
Chroma Systems Solutions, Inc		Ŀ
CogniPower		ibitor Listing
Coil Winding Specialist, Inc		E
Collcraft, Inc.		ч
Cornell Dubilier Electronics		
CPS Technologies		
Cramer Magnetics		
	120	

Exhibitor

• • • • • • • • • • • • • • • • • • • •	
D6 Industries, Inc.	
Danfoss Silicon Power GmbH	 1222
Datatronics	
Dau Thermal Solutions.	 1441
Dean Technology, Inc.	 1437
DEWESoft LLC	 1645
Dexter Magnetic Technologies	 1536
Dialog Semiconductor	 1155
Digi-Key Electronics	 1544
Dino-Lite Scopes	 1455
Dongguan Mentech Optical & Magnetic Co., Ltd	 1655
dSpace Inc.	 1636
Ducati Energia	 . 404
Eaton	 . 428
EBG Resistors	 1439
ECI	 . 836
EFC/Wesco	 . 740
Efficient Power Conversion Corporation EPC.	 1255
Egston System Electronics Eggenburg.	
Electro Technik	
Electrocube, Inc.	
Electronetics	
Electronic Concepts, Inc.	
Electronic Systems Packaging, LLC	
Elkem Silicones Bluestar Silicones	
Elna Magnetics	
EMA Design Automation	
EMWORKS	
Epoxies, Etc.	
Exar Corporation.	
Fair-Rite Products	
Fastron Americas	
Ferrite International Co	
Ferroxcube USA, Inc.	
Focused Test, Inc.	
Food & Beverage Seating	
FSP - Powerland Technology Inc.	
FTCAP GmbH	
Fuji Electric Corp. of America.	
GAN Systems	
Gaotune Technologies Co., Ltd	
GES High Voltage, Inc	
GLOBALFOUNDRIES.	
GMW Associates.	
Goldenbamboo Electronics	
Good-Ark Semiconductor	
Gowanda Electronics	
GUANG DONG FengMing ELECTRONIC TECH. CO.,LTD	
Haining Ferriwo Electronics Co., LTD.	
Hanning Ferriwo Electronics Co., LID	1/55
	14//

Booth #

Exhibitor	Booth #
Harwin Inc	
HBM Test and Measurement.	
Helix Semiconductors	
Hengdian Group DMEGC Magnetics Co., LTD	
Henkel Electronics LLC.	
Heraeus Electronics	
Hesse Mechatronics	
Hioki USA Corp.	
Hitachi Chemical Company Ltd	
Hitachi Metals	
Hitachi Semiconductors - AmePower	
Hoi Luen Electrical Manufacturer Co., Ltd.	
Holy Stone International	
Hubei Ruiyuan Electronic Co., Ltd	
HVR Advanced Power Components	
AS IEEE Industry Applications Society	
CE Components, Inc.	
CEL s.r.l.	
Ilinois Capacitor	
ndium Corporation.	749
nfineon Technologies Americas Corp	701
nnoCit LLC	1629
NSTEK America	657
nter Outstanding Electronics Inc IOE	1548
TELCOND SRL	
TG Electronics, Inc	
WATSU ELECTRIC CO.,LTD	
J&D Electronics Co., Ltd	
JARO Thermal	
Jiang Yin Zhongwei Electronic Co., Ltd	
Jianghai America Inc	
Jiangsu Sinopower Semiconductor Co	
Johanson Dielectrics, Inc.	
Jovil Universal LLC	
Kanthal	
Kaschke Components GMBH	
KDM Zhejiang NBTM Keda Magnetoelectricity Co. Ltd	
Kendeil srl	
Keysight Technologies	
Kikusui America, Inc.	
King Nichi Technology Guangzhou Co., Ltd.	
KITAGAWA INDUSTRIES America, Inc.	
EM USA, Inc.	
Li Tone Electronics Co, LTD	
Littelfuse, Inc.	
_odestone Pacific	
TEC Corporation	
Mag. Layers USA	

Exhibitor Listing

Exhibitor

Magna-Power Electronics		
MagnaChip Semiconductor		
Magnetic Metals Corporation		
Magnetics		
Malico Inc.		540
Mentor, A Siemens Business	'	1355
Mentor Infolytica		636
Mersen		
Mesago Messe Frankfurt GmbH		
Methode Power Solutions Group		828
Microchip Technology, Inc.		509
Micrometals, Inc.	'	1237
Micromouse Competition Exhib	it Ha	II 4B
Mitsubishi Electric US, Inc.		919
MK Magnetics Inc		1248
Monolithic Power Systems, Inc.		925
MORNSUN AMERICA LLC		630
Mouser Electronics, Inc.		411
MPS Industries, Inc.		526
MTL Distribution	'	1531
NAC Semi		
NAMICS Technologies Inc.		
Nanjing New Conda Magnetic Industrial Co. LTD		
National Magnetics Group/Ceramic Magnetics, Inc.		
Navitas		
New England Wire Technologies.		
Newtons4th Ltd		
NH Research, Inc.		
NIC Components Corp.		
Nichicon America Corporation.		
NORWE Inc.		
Nutherm Tech, Inc		
Ohmite MFG		
ON Semiconductor/Fairchild		
OPAL-RT TECHNOLOGIES		
Pacific Sowa Corporation; C/O Epson Atmix Corporat		
Paktron Capacitors, Division of Pancon Corp.		
Panasonic		
Payton America Inc.		
Pearson Electronics, Inc.		
PELS IEEE Power Electronics Society.		
PEM Ltd		
pSemi		
PIN SHINE INDUSTRIAL CO., LTD		
PINK GmbH Thermosysteme		
PMBus		
PMK Mess- und Kommunikationstechnik GmbH		
Polytronics Technology Corp.		
Power Integrations.	'	1245

Booth #

Exhibitor

	•
Power Solutions Inc	1
PowerAmerica	39
PowerELab Ltd	4
Powersim, Inc	2
Precision Inc	
PSMA Power Sources Manufacturers Association	
Pulse Electronics	7
Qualtek	
Quik-Pak	
RECTRON SEMICONDUCTOR	
REMTEC, Inc	
Renco Electronics, Inc	
Renesas Electronics	
Richardson RFPD	
Ridley Engineering, Inc	
Rogers Corporation	
Rohde & Schwarz USA, Inc	
ROHM Semiconductor	
RTDS Technologies	
Rubadue Wire Company, Inc	
Rubycon	
SABIC	
Samwha USA Inc	
SanRex Corporation	
SBE, Inc	
Schaffner Trenco LLC	
Schammer Henco LLC	
Scientific Test, Inc	
Semikron, Inc	
Sentec	
Shandong Dongtai Electronics and Science Co	
ShengYe Electrical Co. Ltd	
Shenzhen Chuangshiding Electronics Co., Ltd	
Shenzhen Codaca Electronic Co., Ltd	
Shenzhen Zeasset Electronic Technology Co., Ltd	
Shizuki Electric Company-ASC Capacitors	
Sidelinesoft, LLC	
Signal Transformer	
Silicon Labs	
Simplis Technologies	
Sirectifier Electronics Tech Corp. of Jiangsu	
Sonoscan, Inc	
Speedgoat	
SST Vacuum Reflow Systems	
Standex-Meder Electronics	
Stapla Ultrasonics Corp	
STAr Technologies Inc	
Stellar Industries Corp	
STMicroelectronics	
Storm Power Components	12

Booth #

Exhibitor Listing

	Exhibitor		oth #
	Sumida America Components Inc		
	Superworld Electronics S PTE LTD.		
	Synopsys, Inc.		
	Taiwan Semiconductor Inc.		
	Tamura Corp. of America, Tamura HQ, Tamura China		
	TDG Holding Co., LTD.		
	TDK Corporation		. 901
	Tektronix Inc.		. 854
	Teledyne LeCroy	'	1421
	Texas Instruments		. 501
	Thermik Corporation	'	1654
	Tiger Transformer Technologies A Sale Branch of Anhui Tiger Co., Ltd		1558
	Tongfeng Electronics Group		
	Torotel Products, Inc.		. 304
	TowerJazz		620
	Transim, EETimes, EDN, Electronic Products, Silicon Expert		. 918
	Transim Technology		. 918
	Transphorm		. 947
	Triad Magnetics	'	1554
	TT Electronics		
	Typhoon HIL, Inc.		
	UNC Charlotte-EPIC		
	United Chemi-Con		
	United Silicon Carbide		
	VAC Magnetics, LLC.		
	Venable Instruments		
	Versatile Power		
	Viking Tech America Corporation.		
	Vincotech GmbH.		
	Vishay Intertechnology, Inc.		
	Voltage Multipliers, Inc.		
	Wacker Chemical Corporation		
	Wakefield-Vette Thermal Solutions. Well Ascent Electronic Ganzhou Co., Ltd.		
	WEMS ELECTRONICS		
	Weld's Electronics		
£.			1744

2018 Supporting **Publications**

as of 2 15 18

APEC would like to recognize the following publications for their generous support of the APEC 2018 Conference and Exposition:

ASPENCORE

The publications listed below are all part of AspenCore

- EDN
- FF Times
- EE Web
- Electronic Products
- Power Electronics News
- Embedded

Bodo Arlt

Editor Katzbek 17a D-24235 Laboe Germany +49 4343 421790 editor@bodospower.com www.bodospower.com

Laurel Zimmerman

Charged EV Magazine 4121 52nd Avenue, South St. Petersburg, FL 33711 727.258.7867 laurel@chargedevs.com www.chargedevs.com

APEC. 2+18 CONFERENCE AND EXPOSITION

Wurth Electronics Midcom Inc..... 401

Xiamen SET Electronics Co., Ltd.

Zhuhai Weihan Wire Co., Ltd.

216

Steve Cholas Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.edn.com

EE POWER

Adam Pitel

EE Power LLC 12 E Mechanic Street New Hope, PA 18938 973.668.6499 adam@eepower.com www.eepower.com

Steve Cholas

Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.eetimes.com

EEWeb

Steve Cholas Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.eeweb.com

Electronic Design

Jane Cooper

Penton Electronics Group 330 N. Wabash Ave. Chicago IL 60611 312.840.8462 adrian.piazza@penton.com www.electronicdesign.com

Steve Cholas

Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.electronicproducts.com

Ross Webster Webcom Communications 7355 East Orchard Road, Suite 100 Greenwood Village, CO 80111 720.528.3770, ext. 102 rossw@webcommunications.com www.electronicsprotectionmagazine.com

Thomas Smart

Production Manager, MMG Publishing Limited European Head Office: + 44 (0)1892 613400 North American Office: 866.364.0951 MMG Publishing Limited Suite 2, 1-3 Warren Court, Park Road, Crowborough, East Sussex TN6 2QX www.electronics-sourcing.com 2018 Supporting Publications

Amber Cooleen Marketing Director IEEE GlobalSpec 201 Full Road Albany, NY 12203 518.238.6647 amber.cooleen@ieeeglobalspec.com www.electronics360.com

Steve Cholas Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.embedded.com

Answering Your Questions About Power Design **David Morrison, Publisher and Editor** How2Power 631.269.4540 david@how2power.com www.how2power.com

Powered by Yole Développement

Camille Veyrier Yole Developpement 45 rue Sainte Genevieve 69006 Lyon France +33.472.83.01.01 clotilde.fabre@yole.fr www.i-Micronews.com

Graham Kilshaw

Interference Technology 1000 Germantown Pike Plymouth Meeting, PA 19462 P. 484.688.0300 graham@item.media info@item.mediainterferencetechnology.com

Ross Webster Webcom Communications 7355 East Orchard Road, Suite 100 Greenwood Village, CO 80111 720.528.3770, ext. 102 www.magneticsmagazine.com

Steve Cholas Global Director Strategic Alliances & Business Development 949.413.1732 scholas@aspencore.com www.powerelectronicsnews.com

Karen C. Smith-Kernc

Account Representative US/East Alan A. Kernc Account Representative US/West and Canada 144 Hill Road, Suite 208 New Holland, PA 17557 P. 717.397.7100 www.power-mag.com

Information to Power Your Desig

Julia Stocks Power Systems Design Magazine 146 Charles Street Annapolis, Maryland 21401 USA 410.295.0177 Julia.stocks@powersystemsdesign.com www.powersystemsdesign.com

Jacob Fattal

U.S. Tech Global 10 Gay Street Phoenixville, PA 19460 610.783.6100 mail@us-tech.com www.us-tech.com

Camille Veyrier

Yole Developpement 45 rue Sainte Genevieve 69006 Lyon France +33.472.83.01.01 clotilde.fabre@yole.fr www.i-Micronews.com

2018 Supporting Publications

Notes	Notes
	Notes
	К

Notes

Notes		

CONFERENCE AND EXPOSITION

226

APEC 2**+**18

Notes

2025 M Street NW, Suite 800 Washington DC 20036 USA P: +1-202-973-8664 E-mail: apec@apec-conf.org www.apec-conf.org

SAVE범 DATE March 17-21, 2019 ANAHEIM CONVENTION CENTER Anaheim, California

APEC. 2019